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Abstract—We propose a novel method for robust 6-dof pose
tracking of rigid objects from monocular images. In our method,
3D object tracking is achieved by directly aligning video frames
to dynamic templates rendered from a textured 3D object model.
Unlike previous methods which usually utilize a small number
of discrete templates to align with video frames, we employ
online textured model rendering to create dynamic templates
in continuous pose space according to the previously estimated
object pose. In this way, pose estimator could be easily converged
to the optimal state. Besides, the rendered template also helps to
detect the occlusion area by comparing it with the current frame,
making our method highly robust to partial occlusions. The
performance of our method is further improved by introducing
a generic representation of dense images features, which we call
Extended Dense Feature Fields (EDFF). Different kinds of pixel-
level image features can be added to the EDFF and be optimized
simultaneously in a unified Gauss-Newton optimization scheme.
Attributing to dynamic templates from textured model rendering
and complementary features in EDFF, our method is able to
deal with poor-textured and specular objects, as well as lighting
variation and heavy occlusions. While our method is quite simple
and straight-forward, it achieves competitive or even superior
results compared to the state-of-art on challenging datasets.

Index Terms—3D object tracking, dynamic templates, textured
model rendering, direct image alignment, dense image features,
occlusion detection.

I. INTRODUCTION

ROBUSTLY tracking the 6-dof pose of an object is an
essential problem in 3D computer vision [1]–[4]. It is

also critical for the development of robotic manipulation and
augmented reality applications [5]–[7]. Existing model-based
3D object tracking methods typically rely on a simple triangle
mesh and a small set of template images of the object [7]–
[9], as shown in Fig. 1(b). These methods are prone to fail
when the object pose changes in a wide range through the
video sequence. The problem lies in the difficulty to build a
complete template set that accounts for all possible poses in 6-
dimensional pose space, which leads to tracking failure when
a proper template for current pose is not available. Another
category of methods choose to align consecutive video frames
over a triangle mesh model [10], as shown in Fig. 1(c).
These methods benefit from the temporal consistence between
successive frames. However, they sometimes tend to fail due
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to background interference. That is, besides the foreground
pixels, the background pixels around the object are also very
similar in neighboring video frames, so they would gradually
drag the tracking result to background area and finally lead to
large pose drifts. On the other hand, robustly tracking the pose
of a partially occluded object is still a difficult problem. Some
previous works try to solve this problem by employing robust
dense features [8] or sparse keypoints [11]. These strategies
are effective in general cases, but still fail in heavily occluded
situations.

Therefore, we introduce a dynamic template-based method
to resolve these problems. An overview of the proposed
method is shown in Fig. 1(a). Instead of building a static
template set with fixed number of template images offline,
we create dynamic templates in continuous 6-dof pose space
online by rendering a pre-built textured 3D model of the
object. It is thus no longer a problem to find a suitable template
for each video frame. Considering temporal consistency, object
model with the latest tracked pose is rendered as template for
tracking the current frame. The template is also dynamically
updated with each intermediate pose output during optimiza-
tion iterations, until final convergence. Note that this template
updating strategy is not possible in previous methods which
only adopt wireframe models. On the other hand, the rendered
template is always background-free and non-occluded, which
acts as a natural segmentation of the object and eliminates the
influence from background and occluded pixels. We employ
an efficient occlusion detection module by comparing the
rendered template with the current video frame. We also
add an illumination estimation module in our method. We
render the tracked object with the estimated illumination,
aiming to get a realistic rendering to best resemble the current
frame. Experiments show that using dynamically rendered
templates to align with current image is much more robust
and stable, thus yielding significant improvements in tracking
performance.

The general framework of our 3D pose tracking algorithm
is similar to those of previous works [8], [12]. We use
direct image alignment1 [14] to iteratively optimize the pose
parameters. The direct alignment process is presented in Fig.
2. Most previous works only use a single type of image

1In some of the previous works, ‘direct image alignment’ is called ‘dense
image alignment’. Also, ‘direct method’ (for 3D tracking) is sometimes called
‘dense method’. They all belong to the same kind of methods based on Lucas-
Kanade algorithm. According to [13], ‘direct’ is a more appropriate term. So
we use ‘direct’ throughout this paper.
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Fig. 1. Comparison of the proposed method with previous direct tracking methods. (a) We propose to align the current frame with dynamically rendered
templates from a pre-built textured 3D object model. (b) Some previous works try to align the current frame with a template selected from a small set of
discrete templates. (c) Other previous works align consecutive video frames over a triangle mesh model.

feature for alignment, among which the most commonly
used one is image intensity [10], [12], [15]. Crivellaro et
al. [8] introduce gradient-based Descriptor Fields in place of
pixel intensities to improve the alignment robustness. In our
experiments, we find it even more robust to combine different
dense features together. So we build on [8] to formulate a
generic representation of dense image features. We refer to
this extension as Extended Dense Feature Fields (EDFF).
EDFF is constructed using different combinations of pixel-
level image features. Experiments show that different kinds
of image features tend to be complementary to each other
and an EDFF involving multiple features often leads to more
robust pose tracking results. The proposed EDFF also makes
it possible to handle monocular object tracking and RGB-D
object tracking in a unified manner, because depth information
can be trivially added to the EDFF in our framework. More-
over, with careful selection of features in EDFF, our method
is able to deal with various difficult tracking situations, such
as tracking poor-textured objects or tracking in environments
with evident illumination changes. Some of the tracking targets
and environments in our experiments are shown in Fig. 3.

At the core of our method is the rendering of textured 3D
models as dynamic templates. In discrete template case, each
2D template is just a partial representation of the 3D object.
The missing information makes direct image alignment harder
in both initialization and optimization procedures. We take
advantage of a pre-built textured 3D model, which can be seen
as a full representation of the object, to render out dynamic
templates online. The benefits lie in several aspects: Firstly, a
good initial template for the current frame is automatically
acquired by rendering the object with the latest tracking
result. This initial template is almost always in the region
of convergence for aligning with the current frame. Besides,
dynamic template updating during optimization also results in
easier and faster convergence. Secondly, the rendered template
is a natural segmentation of the object from background,
which constrains the pixels involved in alignment optimization
and helps to avoid drifts caused by background interference.
Thirdly, with the full information from the textured model, it
is easy to detect object occlusions and discard the occluded
pixels before pose optimization. To the best of our knowledge,

we are the first to apply dynamic textured model rendering to
a direct 3D object tracking method with explicit occlusion
detection and illumination estimation strategies.

The main contributions of this paper are:
1. Applying dynamic textured model rendering to direct

3D object tracking. This technique enables online template
creation and updating, helps to deal with background clutters
and partial occlusions, thus remarkably improves tracking
performance in challenging situations.

2. Constructing a generic representation of dense image
features for direct image alignment. With this representation,
complementary features are combined in a unified pose opti-
mization framework to further enhance tracking robustness.

3. Employing a simple yet efficient occlusion detection
process in the tracking pipeline. This step eliminates the
influence from occluded pixels and significantly improves the
tracking results on heavily occluded video sequences.

II. RELATED WORK

A vast variety of 3D object tracking methods have been
proposed in the past several decades. Lepetit et al. [1] give a
comprehensive and detailed survey on early monocular model-
based object tracking algorithms. According to the survey,
early methods try to use feature points or strong edges to
handle this task. But feature point-based methods are limited to
well-textured objects and edge-based methods perform badly
with background clutter or partial occlusions. In the following,
we only focus on some recent works that are closely related
to our method.

Template-based direct image alignment approaches have
become very popular in recent years [8], [14], [16], [17].
Most of them are built on the famous direct image alignment
framework: Lucas-Kanade algorithm [18]. L-K algorithm is
originally designed for parameter estimation of 2D image
transformations, but is extended to 3D object tracking by
employing a 3D warping function [19] with a known 3D object
model. Crivellaro et al. [8] propose a gradient-based dense
descriptor to improve the alignment performance with poor-
textured and specular objects. Although this method is very ro-
bust owing to the well-designed Descriptor Fields, it still gets
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Fig. 2. Extended Dense Feature Fields (EDFF) for direct image alignment.
We propose a generic representation for direct image alignment applied to
3D object tracking. Arbitrary pixel-level features, such as intensity, color,
gradient and depth, can be freely added to the EDFF. These features are then
efficiently processed at the same time to give out the optimal pose estimate.
The 3D warping function W (x, pT , p) is a transfer function that performs
back-projection and re-projection over the 3D model to find corresponding
pixels between the template and image.

a relatively low success rate when tracking objects with fast
and large-scale movements, such as in video ATLAS#2 [8]. We
extend their work by employing dynamic template rendering
through pose optimization, and generalizing the gradient-based
Descriptor Fields to multi-feature-based Dense Feature Fields.
We compare our results with [8] in Section IV. Caron et al.
[20] propose a model-based visual pose estimation and camera
localization method. They also render textured models to
compare with video sequences, but they mainly focus on city-
scale scene models for vehicle localization, so that 3D object
tracking in complex situations is not explicitly addressed. A
recent work [10] employs a constrained objective function to
model intensity variations by using the surface normal of the
object under Lambertian assumption. Inspired by them, we
add an illumination estimation module in our method, which
can be seen as a decoupled version of their strategy. We use
linear combinations of the first nine spherical harmonics (SH)
to model complex lighting conditions [21]. But we choose
not to couple this factor into the final objective function.
Instead, we first estimate the illumination of the video frame
and then render the object under the estimated illumination as
template. This ensures the illumination consistency between
the rendered template and the video frame, while keeping the
final objective function simple and unchanged.

A different class of approaches use 3D level set functions
to maximize the discrimination between statistical foreground
and background appearance models [22], [23]. In these region-
based methods, PWP3D [22] is the most famous, and is still
among the state-of-art. These methods use different methodol-
ogy with ours. They take advantage of image statistics and fit
them in a probabilistic framework, while we directly utilize
dense image features. Although region-based methods have
been successful in 3D texture-less object tracking, they are not
guaranteed with good results in complex scenes [10], [11].

Pauwels et al. [4], [11] propose a stereo-based 3D object
tracking method that combines dense stereo cues, optical

Exp. Setup ATLAS

(a) Dense Tracking Dataset

(b) Rigid Pose Dataset

Soda CubeClown Candy EdgeSoup

Fig. 3. Illustration of the tracked objects in our experiments. Our method can
successfully track the 6-dof pose of both well-textured and poor-textured (e.g.
clown and edge) objects, under difficult situations such as lighting variation
(e.g. Exp.Setup) and specularity (e.g. ATLAS). The objects are taken from
Dense Tracking Dataset [8] and Rigid Pose Dataset [11] respectively.

flow, AR flow and sparse keypoint features together, and
provides a synthetic dataset for evaluation. Because of the rich
features they adopt in their method, it performs much better
than region-based and particle-filter-based methods [22], [24].
Although our method is monocular-based and only uses dense
image features, it obtains competitive results compared to [11]
in noise-free and noisy sequences of the provided dataset.
After applying occlusion detection, we even get superior
results in the occluded sequences, which proves the efficiency
of our method in handling heavy occlusions. More details of
the experiments are discussed in Section IV.

In this paper, we assume an initial object pose is available
and focus on the frame-to-frame pose tracking problem. 3D
object detection methods (such as [25]) can be combined with
our method for initialization.

III. PROPOSED METHOD

In this section, we present our 3D object tracking pipeline.
As shown in Fig. 1(a), we track a new frame by aligning it
to dynamically rendered object templates. As a pre-processing
step, we first estimate the illumination of the previous frame.
Next, an appropriate template for the current frame is acquired
by rendering the textured 3D model with the latest tracking
result and the estimated illumination. After that, we detect
the occlusion area by comparing the current frame with the
newly rendered template and discard the occluded pixels.
Finally, we iteratively optimize the pose parameters in the
direct image alignment framework with the proposed Extended
Dense Feature Fields. During each iteration, the template is
dynamically updated according to intermediate pose outputs
to accelerate convergence of pose optimization.

The proposed 3D object tracking pipeline is summarized
in Algorithm 1. We divide our tracking pipeline into five
components: (A) Direct Image Alignment for 3D Object
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Tracking, (B) Dynamic Template Rendering, (C) Extended
Dense Feature Fields, (D) Illumination Estimation, and (E)
Occlusion Detection. Among them, (A) is the general frame-
work for direct 3D object tracking methods, and we present
it here for completeness. (B), (C), (D) and (E) are newly
introduced components in our method. More specifically, (B)
and (C) are the main contributions of the proposed method,
which distinguish our method from the previous works. (D)
and (E) are very important components to help improving the
tracking performance of our method in challenging situations.

In the following, we discuss each component of the above
tracking pipeline in detail.

A. Direct Image Alignment for 3D Object Tracking

We start by introducing the general framework of direct 3D
object tracking. Similar to previous works, we use the direct
image alignment framework [14] as our basic method. The
original Lucas-Kanade algorithm [18] aims to minimize the
sum of squared error (SSD) between intensities of template
image T and input image I:

E(p) =
∑
x

‖Int(I,W (x, p))− Int(T, x)‖2 (1)

here Int refers to pixel intensities. W (x, p) is a 2D warping
function which transfers template point x to image point x′

through a 2D transformation (such as affine transformation or
homography) with parameter p.

In order to apply this method to 3D object tracking, we
use a 3D warping function W (x, pT , p) [19] to align current
image with template through a 3D object model. This function
transfers template point x to image point x′ = W (x, pT , p)
by back-projecting x to the 3D model in pose pT and then
re-projecting it to image plane in pose p. The 3D warping
process is shown in Fig. 2. Crivellaro et al. [8] suggest to use
gradient-based Descriptor Fields instead of image intensities
in (1). We further extend this concept and propose a unified
optimization scheme: Extended Dense Feature Fields (EDFF).
The final error function is:

E (p) =
∑
x

‖F (I,W (x, pT , p))− F (T, x)‖2 (2)

where p = [tx, ty, tz, θx, θy, θz] is the vector representation of
6-dof object pose for the current frame I , and pT is the 6-dof
object pose for template T . F denotes the proposed EDFF,
which will be detailed in Section III-C.

B. Dynamic Template Rendering

Some of the previous direct 3D tracking approaches rely
on a small number of discrete templates [8]. These discrete
templates usually compose of a set of template images and the
ground-truth poses corresponding to each image. When a new
frame comes, they first try to select the most similar template
from the template collection and then perform direct image
alignment between the selected template and the new frame.
These methods tend to fail when the current object pose is far
from any of the template poses or the template is not properly

selected. We find these circumstances frequently happen in our
experiments. This problem is more critical in object tracking
tasks than camera tracking tasks because the tracked object
usually occupies only a small region of the image, making
it more difficult to find a template which is similar enough
for convergence of pose optimization. The problem can be
partly solved by constructing a larger template set, but growing
number of templates would greatly increase the computation
in template selection.

To overcome these problems, we use a pre-built textured 3D
model to dynamically create template images which is always
supposed to be similar to the current frame. This approach
is not new in object tracking researches. It has been used in
sparse feature point-based tracking [26], model-based tracking
with mutual information [20], and also in [11] as a comple-
mentation for optical flow to recover from motion drifts. We
find it also very beneficial to apply textured model rendering to
direct 3D object tracking methods. In the following, we present
the details of 3D textured model creation, dynamic template
rendering and online template updating in our method.

1) 3D Textured Model Creation: The main difference of
creating 3D models between the proposed dynamic template-
based method and the discrete template-based method [8] is
that [8] only creates wireframe models, but we need to create
textured models. There are several different ways to create
a textured 3D object model. For example, for simple objects
such as boxes, we can first create a wireframe model using
3D modeling/editing softwares [27], [28]. Then we can use
the texture mapping tools in these softwares to map a texture
image to the wireframe model and obtain a textured 3D model.
For more complex objects, we can use another type of 3D
modeling softwares [29], [30] to directly generate textured 3D
models from a set of pictures, as suggested by [4].

2) Dynamic Template Rendering: With a textured 3D mod-
el, template images of the object in different poses can be easi-
ly created using a rendering engine such as the OpenGL-based
renderer [31]. We render an initial template for frame k using
the latest tracked pose from frame k − 1, which guarantees
the similarity between the template and the image. In order
to render realistic template images from a 3D object model,
the OpenGL-based rendering pipeline includes a Modelview
Transform and a Projective Transform for all of the vertices
[22]. Firstly, a Modelview Transform is applied to transform
the vertex coordinates from the model coordinate frame to the
camera coordinate frame:

Xc = TmXm =

[
R t

01×3 1

]
Xm (3)

where Tm is the Modelview Transform matrix, in which the
rotation matrix R and the translation vector t are derived from
the latest tracked pose of the object. Xm and Xc are the
vertex coordinates in model coordinate frame and in camera
coordinate frame respectively.

A Projective Transform is then applied to project the vertices
to the virtual image plane. Specifically, we render the model
using the exact intrinsic parameters of the same camera that
captures the video. After that, the rendering engine determines
the pixel colors on the rendered image according to the
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texture coordinates of the corresponding vertices in the pre-
built textured 3D model. Also, the depth values of each pixel
is acquired by the rendering engine through ray tracing. The
3D location with respect to each pixel can be calculated from
its depth value via back projection, which is then used in the
3D warping function in (2).

3) Online Template Updating: During pose optimization
iterations, the template is also dynamically updated according
to each intermediate pose estimate to further increase conver-
gence speed. Since we use Gauss-Newton method to iteratively
optimize the pose parameters, a pose update is obtained after
each iteration. Thanks to the textured 3D model utilized in our
method, the template can also be updated after each iteration.
The new template (after each iteration) is rendered in the same
way as the initial template (of each frame), except that we use
the updated pose parameters to perform Modelview Transform
instead of using the latest tracked pose from the previous
frame.

Experiments demonstrate that the online template updating
strategy could effectively increase convergence speed and
reduce the number of iterations required for pose optimiza-
tion. Although this strategy needs extra computation for re-
rendering the object model after each iteration, the decrease
of iteration numbers makes a good compensation. Moreover,
unlike the discrete template-based methods, the proposed
method does not require a template selection step for each
frame. In the template selection step, they have to compute
the Normalized Cross-Correlation (NCC) between the current
frame and each template from the template set, and choose the
template with the largest NCC score [8]. This step could also
be computationally expensive, especially when using a large
template set. Overall, the increased processing time of our
method compared to [8] is acceptable, as detailed in Section
IV-E.

The implementation of dynamic template rendering in our
method is detailed in Algorithm 1. Experiments show greatly
improved convergence rate with the help of dynamic template
rendering, especially in challenging videos with large and fast
movements such as ATLAS#2 in Dense Tracking Dataset [8],
which will be presented in Section IV. Dynamic template
rendering also benefits the occlusion detection step applied
in our method, which will be detailed in Section III-E.

C. Extended Dense Feature Fields

Dense gradient-based Descriptor Fields proposed by [8]
has been proved more robust than image intensities in direct
image alignment algorithms. We borrow the idea of Descriptor
Fields, and further extend it to combinations of pixel-level
image features, which we call Extended Dense Feature Fields
(EDFF). As shown in Fig. 2, different kinds of pixel-level
features can be freely added to or discarded from EDFF to best
adapt to the physical properties of the current tracked object.
We can stack up any type of features we want, and the unified
Gauss-Newton optimization step will automatically combine
them together to give out the optimized pose estimate. For
example, with intensity, color and gradient in EDFF, we can
process monocular object tracking. When depth information is

available, we can simply add depth in EDFF, thus we have an
RGB-D object tracking implementation. In this way, we can
handle RGB and RGB-D based 3D object tracking in a unified
manner.

Suppose we would like to stack up d dimensions (channels)
of features in EDFF, then E(p) is the weighted sum of SSD
between each dimension of template and image features:

E (p) =
∑
i=1:d

wi

(∑
x
‖fi (I,W (x, pT , p))− fi (T, x)‖2

)
(4)

Here, the weight wi adjusts the influence of different
features, and is taken as wi = 1

σ2
i

in our experiments. σ2
i

is the variance of the i-th feature fi. (4) is equivalent to (2)
where F =

[√
w1f1,

√
w2f2, ...,

√
wdfd

]T
.

We use standard Gauss-Newton method to iteratively min-
imize the error function E(p). At each iteration, we optimize
the increment δp by:

E (δp) =∑
i=1:d

wi

(∑
x

‖fi (I,W (x, pT , p)) + Ji (x, p) δp− fi (T, x)‖
2

)
(5)

Here, Ji (i = 1, ..., d) are the jacobians. This weighted least
squares problem can be efficiently solved from a single stacked
normal equation:

JTWJδp = JTW (F (I,W (x, pT , p))− F (T, x)) (6)

where J ∈ RNd×m (N denotes the number of pixels involved
in optimization, d denotes the dimension of dense features,
m denotes the number of pose parameters) is the stacked
jacobian, Res = F (I,W (x, pT , p)) − F (T, x) ∈ RNd×1 is
the stacked residuals. W is the weight matrix. Since we only
need to solve one linear system per iteration, the computation
cost of our algorithm scales well with respect to the dimension
of EDFF.

A large variety of features could be used in our unified
dense feature fields, such as image intensities, colors, intensity
gradient, chrominance gradient, depth information, or other
pixel-level features. The components of EDFF should be
chosen according to the characteristics of the object and envi-
ronment. Generally speaking, intensity and color are sensitive
to complex illumination changes, especially for specular ob-
jects. In these situations, gradient-based dense features would
be a better choice because they are relatively insensitive to
illumination changes and specularity [8]. But it would be
beneficial to add color or intensity in EDFF when the lighting
condition of the environment is stable, especially for extremely
poorly textured objects that show nearly no gradient details.
Depth information would improve the tracking results in most
cases.

D. Illumination Estimation

In order to deal with complex lighting variations, we add an
illumination estimation step before rendering out templates for
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Fig. 4. Illumination Estimation. (a) A sample frame from ATLAS#2 in
Dense Tracking Dataset [8]. (b) Object mask acquired from tracking result.
Only pixels inside the mask are involved in illumination estimation. (c, d)
Template re-lighted by the estimated illumination (of the previous frame)
and the error image compared to the current frame. (e, f) Rendered template
without re-lighting and the corresponding error image. After employing the
estimated lighting parameters to the rendering engine, the rendered template
is much more similar to the video frame.

the current frame. Although the lighting condition may change
all along the video sequence, we assume that neighboring
frames usually share similar illumination. So we first estimate
the illumination of the previous frame according to the tracked
foreground region, and then use the estimated illumination to
re-light the textured 3D model and create templates for track-
ing the current frame. According to [21], a nine-dimensional
linear subspace spanned by the zero, first and second order
spherical harmonics (SH) accounts for at least 98 percent of
the variability in the Lambertian reflectance functions. So we
use the first nine spherical harmonics basis functions [32] to
represent illumination. The RGB image I can be formulated
as:

I (i, j) = ρ (i, j)

8∑
k=0

lkHk (n (i, j)) (7)

where Hk (n) are the SH basis functions, lk are the SH
coefficients, ρ (i, j) are the albedos corresponding to each
pixel, n (i, j) = (nx, ny, nz) are the surface normals.

Although n (i, j) can be directly calculated from the 3D
model (rendered with the latest tracked pose), simultaneously
solving for the SH coefficients lk and the albedo map ρ (i, j) in
(7) is still an underconstrained problem. Therefore, we follow
the previous works [32], [33] and solve for lk and ρ (i, j) in
two steps.

Firstly, we temporarily set the albedo map to an uniform
map, i.e., ρ (i, j) = 1. In this way, we can solve for the SH
coefficients lk by minimizing the following error function:

EL =
∑
i,j

∥∥∥∥∥I (i, j)−
8∑
k=0

lkHk (n (i, j))

∥∥∥∥∥ (8)

This is a standard least squares problem. The SH coefficients
can be calculated by solving a linear system. We calculate the
lighting in separate RGB channels and obtain a 27 dimensional
SH vector to represent the illumination, which is then used to
re-light the 3D model using the rendering engine.

(b) (c)(a)

Fig. 5. Occlusion Detection. (a) A heavily occluded frame from Rigid Pose
Dataset [11]. The tracked box is largely occluded by the teddy bear. (b) The
template rendered with tracked pose from last frame. The rendered template
is always clear and non-occluded, which contributes to a simple but efficient
occlusion detection strategy. (c) The detected occlusion area. Pixels inside the
area are discarded from pose tracking optimization.

Secondly, with the calculated SH coefficients lk, we can go
back to solve for the albedo ρ (i, j). We obtain a dense albedo
map by dividing the RGB image by the lighting term for each
pixel:

ρ (i, j)=
I (i, j)

8∑
k=0

lkHk (n (i, j))

(9)

Applying the above two steps to the rendered template, we
obtain the albedo map of the rendered template T (denoted
by ρT (i, j)). Applying the first step to the current frame, we
obtain the lighting parameters of the current frame I (denoted
by lIk). Then we re-light the template using the estimated
lighting parameters of the current frame:

T relight (i, j) = ρT (i, j)
8∑
k=0

lIkHk (n (i, j)) (10)

We demonstrate the illumination estimation step in Fig. 4.
The illumination estimation step makes our textured model
rendering more realistic. It is now possible to create template
that has very similar appearance with the video frame, which
makes the following steps (such as occlusion detection and
direct image alignment) more robust and stable.

E. Occlusion Detection

Occlusion handling is one of the most difficult problems in
3D tracking. Some previous works address this problem by us-
ing sparse keypoints [11], or employing robust dense features
[8]. These strategies can handle certain types of occlusions,
but would fail in more difficult situations. In this paper, we
present a new realistic textured model rendering based strategy
for handling partial occlusions. The proposed strategy could
accurately detect the occlusion area by comparing the occluded
image with the rendered occlusion-free template. As a result,
we are able to tackle the problem of partial occlusion more
effectively than previous works.

In our method, an occlusion detection step is performed
before pose optimization. The occlusion area is detected as
follows:

Firstly, we render the 3D model with the latest tracked
pose to get an occlusion-free template, as shown in Fig.
5(b). Directly comparing the template with the new frame
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is not appropriate due to the object motion between suc-
cessive frames. So we apply a Gaussian filter to both the
template and the new frame to compensate for the motion.
The parameters of Gaussian filtering depend on the average
motion in neighboring frames. We use an 11 × 11 Gaussian
kernel with standard deviation of σ = 5 throughout our
experiments. After that the smoothed template and smoothed
new frame are compared to determine the occlusion area.
In order to further alleviate the distraction from pixels near
occlusion edges, we slightly dilate the detected occlusion area
to get an expanded estimation of occluded pixels. We find
the dilation operation critical in the improvement of tracking
performance. The reason is that leaving out a small number of
non-occluded pixels near occlusion edges does not affect the
tracking performance due to the robustness of direct tracking
method, but reserving them would dramatically influence the
alignment because of the strong gradients they contribute to.
The above process is formulated as:

Occl = [|Gσ ∗ I −Gσ ∗ T | − β]+ ⊕ Strel (11)

where Occl refers to the detected occlusion area, Gσ is the
Gaussian smoothing kernel, β is the detection threshold, [·]+
operator is defined as:

[x]
+
=

{
1,
0,

if x > 0
otherwise

⊕ is the image dilating operator, and Strel is the structural
element used to dilate the detected occlusion area. In our
experiments, Strel is set to a disk-shaped structural element
with a radius of 5 pixels.

After the detection of the occlusion area (as shown in Fig.
5(c)), we discard those occluded pixels and use the rest valid
pixels to track the new frame. Evaluation of our method on
heavily occluded video sequences are presented in Section IV.

IV. EXPERIMENTS

A. Datasets and Implementation Details

We evaluate the proposed method on Dense Tracking
Dataset [8] and Rigid Pose Dataset [11]. These two datasets
provide both synthetic and real-world video sequences under
challenging conditions, and are ideal for testing the robustness
of our method. An illustration of the objects and environments
in these two datasets are shown in Fig. 3.

Firstly, we evaluate our dynamic template-based method on
Dense Tracking Dataset to compare with the discrete template-
based method [8]. The effectiveness of our illumination esti-
mation module is also demonstrated.

Secondly, we compare the overall performance of our
method with 5 state-of-art methods on Rigid Pose Dataset.
We also evaluate our method with and without the occlusion
detection module, as well as using different dense features in
EDFF.

To increase the basin of convergence, we employ a multi-
scale optimization scheme by smoothing the image with
Gaussian kernels. We use 4 levels, with σ = [8, 4, 2, 0] (σ = 0

Algorithm 1 3D Object Tracking Pipeline
Input: Textured Model M , previous frame Ik−1, current

frame Ik, previous pose pk−1
Output: Current pose pk

1: Render M in pose pk−1 to get the foreground mask of
Ik−1;

2: Estimate the illumination of Ik−1 based on (8), using only
pixels inside the foreground mask;

3: Re-render M in pose pk−1 with the estimated illumination
to create the initial template T0, read out the 3D coordi-
nates of each foreground pixel from the renderer;

4: Calculate the template EDFF F (T0, x) and the image
EDFF F (Ik, x);

5: Detect the occlusion area based on (11), discard the
occluded pixels;

6: Set pk = pk−1, pT = pk−1, T = T0;
7: for a number of iterations do
8: Calculate the stacked jacobian J and stacked residual

Res = F (I,W (x, pT , pk)) − F (T, x) in (6), solve for
the pose increment δp;

9: Update current pose pk = pk + δp;
10: if converged then
11: Output pk;
12: Break;
13: else
14: Update template pose pT = pk;
15: Update template T by rendering M in pose pT , read

out the 3D coordinates of each foreground pixel from
the renderer, re-calculate the template EDFF F (T, x);

16: end if
17: end for

means the original image). The kernel size of each level is set
to 2σ+1. Pose optimization is started at the coarsest level, and
the estimated pose is used as initial pose for the next level.
The maximum number of iterations for each level is set to 10.
We stop the iteration if the difference of average alignment
error between two iterations is below 1e-4.

B. Results on Dense Tracking Dataset

The Dense Tracking Dataset [8] provides real-world video
sequences of poor-textured objects in two challenging envi-
ronments, including strong moving light source, bright spec-
ularities and motion blur caused by fast movement (as shown
in Fig. 3(a)). Thanks to the discriminative gradient-based
Descriptor Fields, [8] obtains very good tracking results using
only 1 and 24 discrete templates for two different environ-
ments respectively. But they still get a relatively low tracking
success rate on ATLAS#2, which includes fast and wide-range
motions. The problem lies in the limitation of using discrete
templates, as discussed in previous sections. By employing
dynamic template rendering, we further improve the tracking
success rate on this dataset.

Since only wireframe models are used in [8], the authors
provide only wireframe models of the objects in Dense Track-
ing Dataset. So we create textured object models using a 3D
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(a) (b) (c) (d)

Fig. 6. Sample frames from video ATLAS#2 in Dense Tracking Dataset [8] and the corresponding tracking results. First row: Sample frames. Second row:
Tracking results superimposed on the original images. Our method can successfully track the object with (a) illumination changes, (b) specularity, (c) large
scale translation and rotation, and (d) partial occlusion.

model editing software named AC3D [28]. For each model,
we first choose a proper image from the video sequences as
texture image, in which the object is clear and non-occluded.
Then we align the texture image with the 3D model using the
UV mapping tool in AC3D. The resulting textured 3D model
is used in the textured model rendering process in our tracking
pipeline.

Here we use the same evaluation criteria as in [8]. We
evaluate the methods by reporting the percentage of frames
that are successfully tracked. To decide whether a frame
is successfully tracked, we compute a rotation error Rerr
and a translation error terr. The rotation error is defined
as the L-2 distance between the vector representation of
the estimated rotation and the ground truth (in radians),
Rerr =

∥∥(θx, θy, θz)T − (θx−true, θy−true, θz−true)
T
∥∥. The

translation error is defined as the L-2 distance between the
estimated translation and the ground truth (in meters), terr =∥∥(tx, ty, tz)T − (tx−true, ty−true, tz−true)

T
∥∥. A frame is suc-

cessfully tracked if the rotation error and translation error are
both smaller than the thresholds. For fair comparison, we use
the same thresholds for rotation error (εrot = 0.07 radians)
and translation error (εtransl = 0.05 meters) as in [8], and
we only use gradient in our EDFF.

Table I shows the evaluation results of our method compared
to [8]. Our method generally gets a higher tracking success
rate compared to the methods using 1st-order Descriptor
Fields and 1st- and 2nd-order Descriptor Fields, especially
on ATLAS#2. We also evaluate our method with and without
the illumination estimation step. Improved results are obtained
with the help of the illumination estimation module. The
results also demonstrate the superior performance of gradient
over intensity and color when tracking specular objects in the
environment with complex illumination changes.

The rotation and translation errors of our method over the
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Fig. 7. Pose estimation errors of our method over the ATLAS#2 sequence.
(a) Rotation errors (in radians). (b) Translation errors (in meters). The red
horizontal lines are the thresholds used to decide whether the frames are
successfully tracked.

ATLAS#2 sequence are shown in Fig. 7. Over 85% of the
total frames are successfully tracked by our method on this
most challenging sequence, which greatly outperforms discrete
template-based methods. Some sample frames from ATLAS#2
and the corresponding tracking results are illustrated in Fig.
6.

We clarify that [8] mainly focuses on the efficiency of De-
scriptor Fields. They show that the gradient-based Descriptor
Fields remains discriminative even after smoothing by large
Gaussian kernels, thus significantly broadening the region of
convergence of the alignment optimization. So they use very
few discrete templates to illustrate the advantage of Descriptor
Fields. If more templates were used in their method, the results
would be better. But as discussed in Section III-B, constructing
a larger template set would add to the difficulty in template
selection, which also affects the overall performance of the
algorithm.
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TABLE I
TRACKING SUCCESS RATE (IN %) ON DENSE TRACKING DATASET

Exp#1 Exp#2 ATLAS#1 ATLAS#2
Intensity 42.1 22.2 88.6 22.5
Color 51.0 34.3 91.8 24.6
1st-order Descriptor Fields 98.4 97.5 100 39.4
1st- and 2nd-order Descriptor Fields 92.8 97.8 100 33.4
Ours without illumination estimation 100 98.6 100 83.3
Ours with illumination estimation 100 99.7 100 85.1

TABLE II
TRACKING SUCCESS RATE (IN %) OF OUR METHOD USING DIFFERENT EDFFS ON ORIGINAL SEQUENCES OF RIGID POSE DATASET

channels soda soup clown candy cube edge average
Intensity 1 76 90 94 90 98 94 90.3
Color 3 94 95 96 93 97 93 94.7
Gradient Orientation 1 80 91 95 89 93 91 89.8
Gradient Fields 4 92 92 98 90 96 92 93.3
Lab Gradient Fields 12 90 98 98 96 92 93 94.5
Color+Gradient Fields 7 94 96 98 94 98 95 95.8
Depth 1 83 80 83 81 78 78 80.5
Depth+Color 4 95 94 97 95 99 96 96.0
Depth+Gradient Fields 5 96 94 99 96 98 95 96.3

C. Results on Rigid Pose Dataset

The Rigid Pose Dataset [11] provides synthetic video
sequences of 6 different objects (as shown in Fig. 3(b))
under a variety of realistic conditions. The provided videos
compose of original (noise-free) sequences, noisy sequences
and occluded sequences, and are featured with wide-range
movements, background and object variability, added noise,
and heavy occlusions. Textured 3D object models are provided
in this dataset, so we directly use them in our tracking pipeline.
Since [11] is a stereo-based method, stereo video pairs (from
left and right cameras) are provided. We only use the left
video sequences to evaluate our method on original, noisy and
occluded conditions.

We first evaluate the performance of different EDFFs. Then,
we compare the results of our method with [11] and the other
four methods: a state-of-art region-based 3D tracker, PWP3D
[22]; a particle-filter-based tracker provided by BLORT [24];
a re-implemented version of the gradient-based direct tracker
[8]; and a method based on direct alignment between consec-
utive video frames, which we refer to as Consecutive method.
The Consecutive method can be seen as an approximate im-
plementation of [10], except that the surface normal constraint
for intensity variation is not considered (which will not affect
the performance in this synthetic dataset). We use the same
evaluation criteria as in [11]. We measure the tracking success
rate throughout the entire sequence. When tracking is lost, the
tracker is automatically reset to the ground truth.

1) Evaluation of Different EDFFs: We first evaluate the
performance of different dense image features and their com-
binations used in our Extended Dense Feature Fields (EDFF).
As discussed in Section III-C, different kinds of dense image
features can be added to the EDFF and be optimized in a u-
nified Gauss-Newton solver. The complementarity of different
features would result in more accurate pose estimate. Here we
consider nine different kinds of dense image features and their
combinations: (1) Image intensity; (2) Color (RGB values);
(3) Gradient Orientation; (4) Gradient Fields (here we refer

Gradient Fields to gradient-based Descriptor Fields [8] for
simplicity.); (5) Stacked Gradient Fields of Lab color space;
(6) Color + Gradient Fields; (7) Depth; (8) Depth + Color; (9)
Depth + Gradient Fields. Because we use a synthetic dataset
for evaluation, depth information can be acquired by rendering
the objects with ground-truth poses. But we clarify that real
depth measurements from depth sensors can also be applied
to our algorithm (after a simple pre-filtering). We evaluate the
above dense features on the original sequences of Rigid Pose
Dataset and the results are shown is Table II.

The results suggest that image gradient performs generally
better than image intensity, but also show the benefit of using
color information. We find in our experiments that color is a
discriminative feature and is very helpful in distinguishing the
object from cluttered background. The object and cluttered
background may share similar gradient around the object
silhouette, or they may happen to have similar colors, but
these two situations rarely occur at the same time. So it would
be complementary to combine color and gradient information
together. We simply stack them up in the unified EDFF,
and get a better average tracking success rate than using
color or gradient alone. To further test the capability of the
unified EDFF, we add synthetic depth measurement to it, and
obtain superior results compared to EDFFs without depth. This
proves that the proposed method can be extended to a RGB-D
object tracking method by simply adding depth information to
the Extended Dense Feature Fields. Here we only test some
of the most commonly used dense image features. Some more
complex image features can also be used in the EDFF, as long
as they assign some sort of measurements to each pixel.

Note that in contrast to the results on Dense Tracking
Dataset, in which gradient performs much better than intensity
and color, the results here indicate that the performance of
intensity, color and gradient are comparable on Rigid Pose
Dataset. Particularly, color even performs slightly better than
gradient. The reason is that unlike the videos in Dense Track-
ing Dataset, the videos in Rigid Pose Dataset do not contain
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TABLE III
TRACKING SUCCESS RATE (IN %) ON ORIGINAL AND NOISY SEQUENCES OF RIGID POSE DATASET

soda soup clown candy cube edge average
orig noisy orig noisy orig noisy orig noisy orig noisy orig noisy

Sparse-and-Dense 99 97 98 99 100 98 100 100 100 100 98 98 98.9
PWP3D 84 84 96 96 96 89 84 84 84 74 85 84 86.7
BLORT 76 65 77 66 88 82 77 76 93 94 72 91 79.8
Descriptor Fields 92 85 92 93 98 93 90 88 96 95 92 94 92.3
Consecutive 90 88 95 95 93 92 93 93 95 95 95 95 93.3
Ours 94 90 96 96 98 95 94 91 98 96 95 91 94.5

Cube #413Candy #471Clown #338Soup #186Soda #332 Edge #368

Cube #337Candy #293Clown #456Soup #81Soda #241 Edge #151

Fig. 8. Sample frames from original and noisy sequences of 6 objects in Rigid Pose Dataset [11] and the corresponding tracking results. First and second
row: Sample frames and tracking results of original sequences. Third and fourth row: Sample frames and tracking results of noisy sequences. Tracking results
are superimposed on the selected frames. (#number = frame index.) Our method is capable of tracking objects with wide-range rotations and translations, in
cluttered background, and with added noise.

complex illumination changes, and the objects are not made
of specular materials, so that intensity and color remain stable
and are reliable features for pose tracking. This is especially
true when tracking extremely poorly textured objects, such as
the case of the “edge” sequence, in which intensity and color
both perform slightly better than gradient.

Since we mainly focus on monocular-based 3D object
tracking in this paper, only color and gradient information
are included in our Extended Dense Feature Fields in the
following evaluation.

2) Original and Noisy Sequences: We evaluate the overall
performance of our method on original and noisy sequences of
Rigid Pose Dataset, and compare our results with 5 state-of-art
methods. Table III summarizes the evaluation results. Sparse-
and-dense method in [11] obtains an almost perfect result, as
reported in the first row of Table III. They combine dense
motion and stereo cues with sparse keypoint correspondences,
together with feeding back information from the model (AR

flow). Although our method is monocular-based and only
utilizes dense visual cues, it still obtains a competitive result
compared to [11]. Our method also outperforms PWP3D [22],
BLORT [24], Descriptor Fields [8] and Consecutive method
[10]. Consecutive method seems to be less affected by the
added noise, because it aligns noisy image to noisy template
(i.e., the previous frame). But our method still obtains a su-
perior overall performance compared to Consecutive method,
because Consecutive method sometimes suffers from cluttered
background interference, as discussed in previous sections. In
order to compare the performance of the proposed Extended
Dense Feature Fields with Descriptor Fields [8], here we use
color+gradient in our Extended Dense Feature Fields (EDFF),
while Descriptor Fields method [8] relies only on gradient.
The other settings are the same for these two methods. The
results show that the proposed EDFF outperforms Descriptor
Fields under the same settings. The added color information
makes our EDFF a more robust dense feature representation
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TABLE IV
TRACKING SUCCESS RATE (IN %) ON OCCLUDED SEQUENCES OF RIGID POSE DATASET

soda soup clown candy cube edge average
Sparse-and-Dense 68 80 77 81 76 57 73.2
PWP3D 44 44 44 39 38 39 41.3
BLORT 54 63 76 64 76 68 66.8
Consecutive 66 76 68 81 71 65 71.2
Descriptor Fields without occlusion detection 50 54 48 66 53 40 51.8
Descriptor Fields with occlusion detection 74 84 81 76 80 67 77.0
Ours without occlusion detection 52 60 48 70 55 43 54.7
Ours with occlusion detection 76 87 84 81 81 68 79.5

Cube #278Candy #312Clown #158Soup #218Soda #557 Edge #111

Fig. 9. Sample frames from occluded sequences of 6 objects in Rigid Pose Dataset [11] and the corresponding tracking results. First row: Sample frames.
Second row: Tracking results superimposed on the original images. (#number = frame index.) With the aid of an occlusion detection step, our method is able
to handle heavily occluded situations.

compared to Descriptor Fields.
Some of the video frames and the corresponding tracking

results are illustrated in Fig. 8. The tracking results are super-
imposed on the video frames to demonstrate the tracking
accuracy. The proposed method precisely tracks both well-
textured and poor-textured objects, with large scale movement
and added noise in the sequences.

3) Sequences with Heavy Occlusions: We evaluate our
method on the occluded sequences of Rigid Pose Dataset to
demonstrate the effectiveness of the occlusion detection mod-
ule. The results are summarized in Table IV. The last two rows
show the results of our method with and without the occlusion
detection step. The tracking success rate is greatly improved
with the help of the occlusion detection module. To compare
the performance of the proposed Extended Dense Feature
Fields with Descriptor Fields under occlusion, we also evaluate
the Descriptor Fields method [8] with and without adding our
occlusion detection module. In both cases, the proposed EDFF
(color+gradient are used) outperforms Descriptor Fields under
the same settings, which further demonstrates the effectiveness
of combining complementary features in our EDFF.

Moreover, our method even outperforms the stereo-based
sparse-and-dense method in [11] which utilizes much richer
information. In sparse-and-dense method [11], the key com-
ponent to deal with occlusion is sparse keypoint detection
and matching. Although keypoint-based methods are generally
robust to partial occlusions, they still require sufficient texture
to extract enough number of local keypoints. This condition
is often violated by the heavy occlusion in the videos, as a
large proportion of the tracked object is occluded in some

frames, leaving only a small region for keypoint extraction. As
opposed to sparse (indirect) methods, direct methods exploit
dense image information, and are more robust in these heavily
occluded situations. We find that direct methods are able to
successfully track the object with very small non-occluded
image regions. But this advantage would be weakened by
the occluded pixels, if they were not correctly detected and
discarded. The efficient occlusion detection module described
in Section III-E enables our method to robustly detect the
occlusion area. Experimental results show that our method
outperforms the other 5 state-of-art monocular and stereo-
based methods in dealing with partial occlusions. Some of the
indicative frames in occluded sequences and the corresponding
tracking results are presented in Fig. 9.

4) Evaluation Using Only Half of the Frames: In order to
further demonstrate the ability of our method in dealing with
large movements, we manually increase motion by dropping
every second frame and using only half of the frames (i.e.,
frame 1,3,5,...) for pose tracking. In this way, the average
inter-frame motion is approximately doubled, which makes it
more difficult to successfully track the object. The experiments
are conducted on original and noisy sequences of Rigid Pose
Dataset. We compare our method with the 3 most competitive
monocular-based methods: PWP3D [22], Descriptor Fields [8],
and Consecutive method [10].

The results are depicted in Table V. Our method outper-
forms the 3 state-of-art monocular-based methods and the
improvements are more significant than that of using all
of the video frames (compared to the results in Table III).
The evaluation results demonstrate that our method is more
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TABLE V
TRACKING SUCCESS RATE (IN %) ON ORIGINAL AND NOISY SEQUENCES OF RIGID POSE DATASET (USING ONLY HALF OF THE FRAMES)

soda soup clown candy cube edge average
orig noisy orig noisy orig noisy orig noisy orig noisy orig noisy

PWP3D 72 67 80 77 84 83 78 75 71 71 70 68 74.7
Descriptor Fields 71 70 73 73 82 82 80 77 82 76 86 85 78.1
Consecutive 77 74 85 84 80 80 77 75 78 77 89 82 79.8
Ours 89 87 87 86 88 86 85 83 85 84 89 87 86.3

robust to large inter-frame movements than the previous works,
owing to the dynamic template creation and updating strategy
which increases the convergence rate for pose estimation (as
discussed in Section III-B).

D. Discussion

In this subsection, we give a brief discussion about the above
experimental results on the two datasets. Since the newly
introduced components in our method are specially designed
for dealing with challenging situations, the improvements are
most significant on challenging sequences with illumination
changes, specularity, heavy occlusions and large inter-frame
movements.

Firstly, our method greatly outperforms the previous work
[8] on ATLAS#2, which is the most difficult video sequence
in Dense Tracking Dataset. Despite the illumination changes,
specularity and fast movements, our method improves the
tracking success rate from 39.4% to 85.1%. For the other 3
videos in Dense Tracking Dataset, our method shows a minor
improvement, because they are relatively easier. Secondly,
the results on occluded sequences of Rigid Pose Dataset are
significantly improved with the help of the proposed occlusion
detection module. We improve the tracking success rate of
monocular-based methods from 71.2% (Consecutive method
[10] in Table IV) to 79.5%. Our method even outperforms
the state-of-art stereo-based method [11] with 6.3% improve-
ments. Thirdly, when evaluating using only half of the frames
on original and noisy sequences of Rigid Pose Dataset, the
improvements of our method are much more remarkable. We
improve the tracking success rate from 79.8% (Consecutive
method [10] in Table V) to 86.3%, which proves the advantage
of our method in dealing with large and fast movements.

To conclude, our method shows outstanding results for the
most challenging situations, and also obtains minor improve-
ments for relatively easier cases.

As presented in Section III, there are 4 newly introduced
components in our tracking pipeline: Dynamic Template Ren-
dering, Extended Dense Feature Fields (EDFF), Illumination
Estimation, and Occlusion Detection. Each component con-
tributes in dealing with one or more challenging factors.
The illumination estimation module is designed for dealing
with illumination changes, and the occlusion detection module
for dealing with partial occlusions. The dynamic template
rendering strategy helps to deal with both large movements
and partial occlusions, while the proposed EDFF is a robust
dense feature representation which would be helpful for all
of the challenging factors. The proposed method obtains good
performance in two challenging datasets thanks to these newly
introduced components, and the most important contributors

are different according to the main challenging factors of
different video sequences. Moreover, the 4 components are
closely related to each other and they work together to
achieve the best performance. For example, without dynamic
template rendering, the occlusion detection step is not possible.
Specifically speaking, the dynamic template rendering strategy
and the illumination estimation module play the main role on
Dense Tracking Dataset, in which the main challenging factors
are illumination changes and fast motions. For the occluded
sequences of Rigid Pose Dataset, our occlusion detection
module plays the main role. For original and noisy sequences
of Rigid Pose Dataset, dynamic template rendering and EDFF
are the main contributors.

E. Processing Time

In this subsection, we discuss about the computational
complexity of the proposed algorithm, and present detailed
processing times for each step. For all of the experiments a
commodity desktop computer with Intel i7 quad core CPU
@4.0 GHz and NVIDIA GeForce GTX970 GPU are used. In
our implementation, GPU is only used for rendering purposes,
and all the other computations are performed on the CPU.
We run the proposed dynamic template-based method and
our implementation of the discrete template-based method [8]
under the same settings. Both methods need a pre-computation
step, in which we need to build a textured 3D object model
and [8] needs to build a discrete template set. The time
for pre-computation is comparable for the two methods. For
the subsequent tracking pipeline, the average run time is
summarized in Table VI.

Compared to the discrete template-based method [8], our
method requires relatively more computation. The extra com-
putational complexity mainly comes from the dynamic tem-
plate rendering, dense feature calculation, pose optimization,
illumination estimation and occlusion detection steps. When
using discrete templates, 3D model rendering is only per-
formed once per frame. But in our method, the template is
dynamically updated after each pose optimization iteration.
So we need to re-render the 3D model per iteration with the
updated pose parameters, which results in more computation
for the rendering engine. Thanks to the modern graphic
hardware, 3D model rendering can be processed very fast.
A 3D model with moderate complexity (such as the models
in Rigid Pose Dataset) can be rendered by our graphic card
in 1∼2 ms. So the added computation from model rendering
is acceptable. The computational complexity of dense feature
calculation and pose optimization is O(d×N), where d is the
number of feature channels and N is the number of pixels.
We use 7 channels (color+gradient fields) in our EDFF for
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TABLE VI
PROCESSING TIMES PER FRAME (IN MS)

Processing Step Discrete Templates [8] Dynamic Templates (proposed)

A
(per frame)

Template Selection 31.3 -
Rendering 1.7 1.7×2

Illumination Estimation - 6.1
Occlusion Detection - 3.2

Dense Feature Calculation 2.4 3.5

B
(per iteration)

Pose Optimization 3.3 5.7
Dynamic Rendering - 1.7

Template Dense Feature Re-Calculation - 1.6
Average Number of Iterations

niter
17.1 12.6

Total Time per Frame
A+B × niter

91.8 129.6

best tracking performance, while [8] only uses 4 channels
(gradient fields only). Moreover, we need to re-calculate the
dense features for the updated template after each iteration. So
there is also a moderate increase of run time for our method in
these two steps. The extra run time for illumination estimation
and occlusion detection steps are also acceptable because they
only need to be performed once per frame.

Although our method requires more computation in the
above steps, it has some advantages over [8]. Firstly, using
dynamic templates leads to faster convergence in pose op-
timization, which reduces the average number of iterations.
Secondly, our tracking pipeline does not include a template
selection step, which is required in [8]. The computational
complexity of template selection is closely related to the
number of discrete templates (10 in our evaluation). Overall,
our method requires approximately 40% more time to process
a single frame compared to [8], with the benefit of more robust
tracking performance.

V. CONCLUSIONS

We have presented an efficient direct 3D object tracking
method based on textured model rendering. With the newly
introduced rendering technique, dynamic templates are created
and updated online to register with video frames, which
results in much more robust tracking performance compared to
previous approaches. We have also integrated an illumination
estimation module and an occlusion detection module into
the tracking pipeline, which makes our method capable of
handling lighting variation and heavy occlusion. Moreover, we
have generalized the representation of dense image features
for direct image alignment, and obtained improved results
by combining complementary features. With only monocular
information, our method achieved competitive or even supe-
rior results compared to the state-of-art stereo-based method,
and also outperformed the other state-of-art monocular-based
methods on two challenging datasets.

This paper mainly focuses on the 6-dof pose tracking of
rigid objects, but some of the components in our tracking
pipeline are quite general, such as the illumination estima-
tion and occlusion detection modules. Besides, 3D textured
model rendering and Extended Dense Feature Fields are also
very generic techniques. Therefore, these components could
potentially be used to deal with other related problems, such
as non-rigid object tracking.
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