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Abstract—Region-based methods have become the state-of-
art solution for monocular 6-DOF object pose tracking in
recent years. However, two main challenges still remain: the
robustness to heterogeneous configurations (both foreground and
background), and the robustness to partial occlusions. In this
paper, we propose a novel region-based monocular 3D object pose
tracking method to tackle these problems. Firstly, we design a
new strategy to define local regions, which is simple yet efficient
in constructing discriminative local color histograms. Contrary to
previous methods which define multiple circular regions around
the object contour, we propose to define multiple overlapped,
fan-shaped regions according to polar coordinates. This local
region partitioning strategy produces much less number of local
regions that need to be maintained and updated, while still being
temporally consistent. Secondly, we propose to detect occluded
pixels using edge distance and color cues. The proposed occlusion
detection strategy is seamlessly integrated into the region-based
pose optimization pipeline via a pixel-wise weight function,
which significantly alleviates the interferences caused by partial
occlusions. We demonstrate the effectiveness of the proposed two
new strategies with a careful ablation study. Furthermore, we
compare the performance of our method with the most recent
state-of-art region-based methods in a recently released large
dataset, in which the proposed method achieves competitive
results with a higher average tracking success rate. Evaluations
on two real-world datasets also show that our method is capable
of handling realistic tracking scenarios.

Index Terms—pose estimation, 3D object pose tracking, region-
based method, occlusion detection.

I. INTRODUCTION

TRACKING the 6-DOF pose of a rigid object in monocu-
lar videos is an essential problem in computer vision [1].

It is the basic technology in various applications such aug-
mented reality (AR), robotic perception and human-computer
interaction [2]–[4]. Recent researches have demonstrated the
advantages of region-based methods in real-time 3D object
pose tracking among other traditional approaches [5]–[7],
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Fig. 1. (a, b) Illustration of the proposed temporally consistent local
partitioning strategy with overlapped, fan-shaped local regions. The object
is illustrated as a circle for exemplary demonstration. (c) A real example of
the proposed local region partitioning strategy. (d) Partial occlusions could be
accurately detected in our method.

especially in some difficult situations. The underlying sta-
tistical formulation of region-based method makes it robust
to certain kinds of pixel-level outliers, such as a moderate
degree of lighting variation, background cluttering, and minor
occlusions. However, two main challenges still remain for
region-based methods and have limited the application in
more complex configurations: (1) Dealing with heterogeneous
object and background; (2) Dealing with partial occlusions.
We discuss the two challenges in detail as follows.

A. Dealing with Heterogeneous Object and Background

The core of region-based 3D object pose tracking is a
probabilistic formulation aiming to maximize the discrimi-
nation of statistical foreground and background appearance
models [5]. Originally, the statistical information of the image
is described by a single global foreground model and a
single global background model [5], [8]. In that case, good
segmentation results (i.e., posterior probability maps) are only
guaranteed in the situation of tracking a homogeneous object
in a simple background. The global model is prone to fail for
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heterogeneous objects or in cluttered background, in which
case a single statistical model is not sufficient to describe the
complex scene, leading to statistical confusion.

The key in dealing with heterogeneous object and cluttered
background is to replace the global statistical models with
more discriminative local statistical models. In this way, better
segmentation results could be achieved even in heterogeneous
environments, because locally the color distribution is usually
simpler and more distinctive than globally. However, some
other problems emerge when localizing the foreground and
background regions. Firstly, with the increasing number of
partitioned local regions, the number of pixels belonging
to each local region decreases accordingly. The local color
histograms calculated from these very small number of pixels
tend to be unstable and fragile. Secondly, special care is
needed to make sure the local regions are temporally consistent
across the video frames. In other words, the partitioned local
regions of each frame should be reasonably related through
time, so that they could be properly identified and updated
in each frame. To tackle these issues, the recent state-of-art
methods [6], [7], [9] use a large number of overlapped circular
image regions around the object contour as the local statistical
regions. The temporal consistency is guaranteed by assigning
each local region to a 3D model vertex, so that they could
be memorized, identified, and correctly updated in multiple
frames through time. Since each model vertex is associated
with a local color histogram, a very large number of local color
histograms are maintained during the whole tracking process
(although a second, down-sampled 3D model is utilized in
[7], the number of local histograms could still reach 5000 in
maximum). This causes runtime issues since too many local
histograms need to be updated in each frame. The authors have
to use a Monte Carlo approach and randomly update only 100
local histograms per frame.

While the strategy described in [6], [7], [9] is proved to be
very efficient, we argue that it is possible to design an even
simpler and more concise local region partitioning strategy.
As shown in Fig. 1, instead of assigning each local region
to a model vertex, we choose to partition the global region
into overlapped fan-shaped local regions. Here, each region is
identified by the polar coordinates of the pixels relative to the
object center. So here the temporal consistency is inherently
guaranteed along with the stable spatial relationship between
the regions. There is no need to connect the local regions
to some other sources, such as 3D model vertices, in order
to identify them in the following frames. In other words, the
local regions are identified and maintained in the 2D image
domain, instead of in the 3D object model domain. Moreover,
we could now use much less number of local regions (e.g. 24)
and obtain similar or even better segmentation results.

B. Dealing with Partial Occlusions

The second challenge for region-based 3D object pose
tracking methods is to handle partial occlusions. Previously,
most works choose to handle occlusions in an implicit manner.
Region-based methods utilize statistical information of the
image, which makes it inherently resistant to certain degrees

(a) (b) (c)

Fig. 2. Handling partial occlusions using edge distance cues. (a) A cube is
occluded by a brown bear. The detected occluded pixels are illustrated in red,
and the non-occluded pixels are illustrated in green. (b) The edge map. (c)
The edge distance map, which is the Distance Transform [10] (Φ (x)) of the
edge map. This strategy works well for simple texture-less occluders, and we
have further improved it by using edge distance and edge color cues together.

of occlusion. When a small part of the object is occluded,
the other non-occluded parts still provide enough correct
information to prevent the statistical models from corruption.
But when a large part of the object is occluded, the statistical
models would easily get corrupted thus leading to tracking
failure.

Therefore, we believe it would be a better choice to handle
partial occlusions explicitly. In this paper, we exploit two kinds
of edge-based information to detect the occluded pixels: the
edge distance cues and the edge color cues. The idea of using
edge distance cues to handle occlusion has been explored in a
previous edge-based tracking method [11], which assumes the
occluded object contour points tend to have a large distance to
the nearest image edge (as shown in Fig. 2). However, we find
that using only the edge distance cues is not always reliable
since the above assumption is only correct for simple texture-
less occluders, but is often violated when the occluders are
well-textured and have a lot of inner edges. So we propose to
further improve this strategy by using not only edge distance
cues, but also edge color cues. We compare the color of the
contour point in the rendered image to the color of its nearest
edge point in the video frame. For a non-occluded point, the
color difference of these two points would be small since they
both belong to the nearby points on the target object. But for
an occluded point, the color difference would be large, because
the nearest edge point is very likely to locate on the occluder
(which would have different color with the target object in
most cases). By considering the edge color cues, we could
further reduce the influence of the occluded pixels when using
edge distance cues alone is not fully reliable. Experiments
demonstrate that this occlusion detection strategy works very
well in our region-based tracking pipeline.

C. Contribution

This paper aims to tackle the above two main challenges
for region-based 3D object pose tracking. To this end, two
novel strategies are proposed for dealing with heterogeneous
situation and partial occlusions respectively. The main contri-
butions of this paper are:

1. We propose a simple yet efficient local region partitioning
strategy based on polar coordinates. The local regions are
designed to be overlapped fan-shaped regions, which makes
the new strategy both concise and flexible. Our new strategy
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could ensure temporal consistency with very little efforts, and
could achieve competitive or even superior results with much
less number of partitioned local regions.

2. We propose an occlusion handling strategy that explicitly
detects the occluded pixels using edge distance and color
cues. This strategy is utilized seamlessly in the region-based
pose optimization pipeline via an occlusion-aware weight
function, which helps to improve the tracking performance
when encountering partial occlusions.

The rest of the article is structured as follows: Section II
provides a detailed review of the related works, especially
focusing on the recent region-based methods and the occlusion
handling strategies. We present our method in Section III,
including the full derivation of the region-based cost function,
together with the proposed novel local region partitioning
strategy and the occlusion handling strategy. An extensive
experimental evaluation is performed in Section IV. The article
concludes in Section V.

II. RELATED WORK

There is a large amount of literature in 6-DOF object pose
tracking researches [1]. In early years, feature-based [2], [3],
[12] and edge-based [13]–[15] methods have been popular.
However, feature-based methods require that the object is well-
textured so that enough number of local keypoints could be
extracted on the object surface. Edge-based methods, on the
other hand, are prone to fail in cluttered background which
would lead the tracker to be stuck in local minima. In recent
years, the so called region-based methods [5], [8], [16] which
rely on statistical foreground/background segmentation have
proved to achieve state-of-art performance in this task [6],
[7], especially in complex and difficult situations. Therefore,
we mainly focus on region-based methods, which are most
closely related to this work. We also introduce the occlusion
handling strategies proposed in previous 3D object pose track-
ing methods and their shortcomings for comparison with the
one we present in this work.

A. Region-based 3D Object Pose Tracking Methods

The most famous work in the family of region-based meth-
ods is PWP3D [5], which is the foundation of almost all of
the recent state-of-art region-based approaches. Although it
utilizes some basic concepts from earlier works [17], [18],
PWP3D creatively defines an energy function based on pixel-
wise posterior probabilities instead of pixel-wise likelihoods,
which contributes to a much better tracking performance.
Relying on GPU acceleration, this work also becomes the
first region-based method that achieves real-time performance.
Several successive works following the spirit of PWP3D have
been proposed recently [6]–[9], [19], and each of them tries
to address some of the drawbacks of the original algorithm.

The original implementation of PWP3D uses first-order gra-
dient descent for pose optimization, which is very inefficient
because the optimal step sizes (for rotation and translation
parameters respectively) have to be adjusted experimentally
for each model thus are very difficult to decide. It also needs a
lot of iterations to ensure convergence. This issue is addressed

in [8] by replacing the first-order gradient descent with a
second order so-called Gauss-Newton-like optimization strat-
egy. The authors propose to approximate the Hessian matrix
using first-order derivatives, so that the optimal step size
could be determined automatically. They also optimize their
implementation to make it real-time capable using only CPU
parallelization and OpenGL rendering. However, the Gauss-
Newton-like optimization strategy in [8] is developed from
empirical studies and has not been proved mathematically.

Another drawback of PWP3D is that it only uses simple
global foreground and background statistical models, which
leads to tracking failure in cluttered scenes because the global
color models could not sufficiently capture the spatial variation
in those cases. Therefore, based on the idea in [20], a local
region-based method is proposed in [9], in which they define
multiple local regions centered around the object contour
points. For each local region, a unique local foreground model
and local background model are maintained, which contributes
to better segmentation results than the global region model.
With the new localized model, this method shows wider basin
of attraction and higher convergence scores when evaluating
on a 3D object detection dataset (by trying to recover from
perturbed poses for each individual image). However the
performance of [9] for 3D object pose tracking in continuous
video sequences is not clear. Also, no strategy is provided
to ensure temporal consistency of the local statistical models
through the video.

A more recent work [6] combines the idea from [8] and [9],
and further extends the segmentation model by introducing the
so-called temporally consistent local color histograms (tclc-
histograms). They utilize the second-order Gauss-Newton-like
optimization of [8] and the local statistical model of [9].
Furthermore, they propose to ensure the temporal consistency
of the local statistical models by assigning each local region
to a 3D model vertex, so that they could be memorized,
identified, and correctly updated across multiple frames. This
strategy proves to be very efficient, and the resulting algorithm
currently achieves state-of-art performance. However in [6], a
very large number of local color histograms have to be main-
tained during the whole tracking process, which needs special
care and potentially increases the complexity of the algorithm.
In this paper, we also propose a temporally consistent local
model. But instead of assigning each local region to a model
vertex, we choose to partition the global region into overlapped
fan-shaped local regions, and identify each region via the polar
coordinates of the pixels. Therefore, the temporal consistency
is inherently guaranteed in a much simpler manner, and we
only need to maintain a much smaller number of local regions.

The same author summarizes their previous works [6], [8]
in [7], and expands them by providing a systematic derivation
of the Gauss-Newton optimization by means of reformulation
the problem as a iteratively reweighted non-linear least-squares
problem. They also release a large semi-synthetic 6-DOF
object pose tracking dataset. We evaluate our method in this
new dataset and compare our results with the most recent state-
of-arts.

The authors in [19] propose a hybrid tracker by combining
the statistical constraints and the photometric constraints. They
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also propose to partition the global region into fan-shaped
local regions, but the local regions are not overlapped. So the
number of local regions has to be very small, which limits the
performance of the tracker in more complex configurations.
The design of fan-shaped regions has also been used in other
topics in image processing research. In [21], the authors
present a novel local binary descriptor named Ring-based
Multi-Grouped Descriptor (RMGD), in which a ring-region
sampling scheme is introduced to generate pooling region
candidates with multiple scales and shapes. In their method, an
image patch is first divided into a number of ring regions cen-
tered at central of the patch; then each generated ring region
is further divided into a number of fan-shaped sub divisions.
Only 4, 8 and 16-divisions are used in [21]. Bergamasco et
al. [22] introduce a fiducial marker characterized by a circular
arrangement of dots at fixed angular position in one or more
concentric rings. The fiducial marker is built by partitioning
a disc in several evenly distributed sectors (which are fan-
shaped regions), and then the sectors are further divided into
a number of concentric rings.

Some other works also make some improvements in dif-
ferent aspects. In [23], the authors add a boundary term in
the original PWP3D energy function. Extensions on mobile
phones and RGB-D sensors are first introduced in [24] and
[25]. A fast RGB-D algorithm combining the statistical term
and the ICP term is proposed in [16].

B. Occlusion Handling in 3D Object Pose Tracking

For comparison with the occlusion handling strategy in this
work, we give a brief introduction to the occlusion handling
strategies proposed in previous 3D object pose tracking meth-
ods.

An occlusion-aware online update rule is proposed in [23].
They suggest to update the appearance model if and only if
most of the pixels inside the contour pertain to the foreground
(i.e., not occluded). However, they simply rely on the color
posterior maps to decide whether a pixel is occluded, which
is easily influenced by the occluder itself. Also, they only focus
on the update of the color models, but not the more important
optimization step.

In [26], the occluded area is explicitly detected by com-
parison of the current frame and the rendered (non-occluded)
template image. Although this occlusion detection strategy
proves to be effective, it requires a realistic textured 3D model
for rendering, which is often not available.

The authors in [8] propose to handle the mutual occlusion
of two known objects by tracking both of them, assuming the
occluder is also a known object (whose 3D model is available).
But in real occasions, the tracked object could be occluded by
various unknown occluders, such as human hands or other
deformable objects.

A new occlusion handling strategy is introduced in [11] in
the context of edge-based 3D object pose tracking. Based on
the assumption that the occluded 3D object contour points tend
to be far away from image edges, they assign a weight to each
contour point according to the edge distance map. A successive
work [27] proposes to perform direction-based pose validation

by comparing the edge direction of the projected contour point
to its nearest image edge point. The pose validation scheme
is further incorporated for non-local searching and failure
recovery. In this paper, we borrow this idea and extend it
to region-based 3D object pose tracking by considering not
only the edge distance cues, but also the edge color cues. We
combine the region-based statistical formulation with the edge-
based distance and color cues for occlusion handling, which
produces a robust occlusion-aware 3D object pose tracker.

Some other 3D object pose tracking methods also try to
combine edge-based and region-based methods together. Panin
et al. [28] propose to integrate color and edge likelihoods for
efficient data fusion in a 3D object pose tracking pipeline.
Petit et al. [29] develop an edge-based 3D pose tracker
combining geometrical and color edge information. Seo et
al. [30] propose a 3D object pose tracking method based
on optimal local searching assisted by color statistics. In this
paper, we also combine region-based methods with edge cues,
but our motivation is to deal with partial occlusions, which is
different from those methods.

C. Other Related Methods and Our Assumptions

1) Learning-based 3D Object Pose Tracking: Some pre-
vious works have explored the possibility of using learning-
based methods for 3D object pose tracking. Krull et al. [31]
propose to train a random forest that regresses the 3D object
coordinates from the RGB-D image. Tan et al. [32] also utilize
random forest in a RGB-D object tracking framework. More
recently, deep learning-based methods have also been proposed
for 3D object pose tracking. Garon et al. [33] present the
first deep learning-based 6-DOF temporal object tracker with
RGB-D input. A successive work [34] improves the network
architecture in [33] and obtains better tracking performance.
Manhardt et al. [35] present a novel 6-DOF pose refinement
framework using CNN. A new visual loss is designed to drive
the pose update by aligning object contours. Li et al. [36]
proposes a deep neural network which is able to iteratively
refine the pose by matching the rendered image against the
observed image. Recent advances of learning-based methods
have shown great potential in more robust and accurate 3D
pose tracking. However, these methods generally need a time-
consuming training stage with the help of powerful GPUs.
Moreover, the capability of the CNN-based methods for track-
ing unseen objects is also limited.

2) Monocular 3D Object Detection: Another closely re-
lated topic is 3D object detection, in which the 6-DOF pose is
determined from a single image, instead of a continuous image
sequence. In real tracking applications, a 3D object detection
method is required for initialization and re-initialization from
tracking loss. Previously, monocular 3D object detection is
typically achieved using 2D template matching [37]–[40]. In
these methods, both the input image and the templates are
transformed into the so-called gradient response maps for fast
comparison of the dominant gradient orientations. The recent
state-of-art region-based 3D object pose tracking methods [6],
[7] also borrow this idea, and propose to match the so-called
tclc-histograms for (re-)initialization. The tclc-histograms need
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Fig. 3. Overview of the classical model and the proposed model. (a) The classical global region model. (b) The proposed local region model based on
temporally consistent polar-based local partitioning. (c) The corresponding signed distance transform Φ(x).

to be trained in the beginning of a new tracking task by
showing the object to the camera from different perspectives.
However, as also pointed out by the authors [7], the tclc-
histogram-based descriptors will not work in previously un-
seen environments. Apart from template matching, a lot of
deep learning-based 3D object detection methods have been
proposed recently [41]–[46]. These methods train deep neural
networks either to directly predict the pose parameters [41]–
[43], or to first predict the keypoint locations and then estimate
the 6-DOF pose via the PnP algorithm [44]–[46]. The deep
learning-based methods are currently achieving state-of-art
results, with the only drawback that they require powerful
GPUs thus are not light-weight enough for some specific
applications.

3) Our Assumptions: In this paper, we mainly focus on
the frame-to-frame 3D pose tracking problem. We assume an
initial object pose (the pose of the first frame) is given, and
try to estimate the 6-DOF pose of the object in the subsequent
video frames. For evaluation on datasets with ground-truth
poses, the initial pose is given by the ground-truth pose of
the first frame, as with in most previous works [6], [7], [19],
[23], [26], [47], [48]. In real applications, the initial pose
could be manually assigned by roughly align the object to
a rendered object mask (which corresponds to a known pose).
Also, the 3D object detection methods described above can
be combined with our method for automatic initialization and
reset. Besides, we mainly consider the case of single object
pose tracking in this paper, but it is straight forward to extend
the method to multiple object pose tracking as described in
[5]. For multiple object tracking, we need to initialize multiple
trackers for all the objects with their initial poses, and then
track each individual object separately. We also assume that
the camera is pre-calibrated, so that the intrinsic matrix K is
known. For evaluation on datasets, the intrinsic matrix K is
usually provided in the dataset. In real applications, we need
to first calibrate the camera using some calibration tools, such
as the ones provided in Matlab [49] or OpenCV [50], which
are typically based on Zhang’s calibration method [51].

III. PROPOSED METHOD

In this section, we first briefly introduce the mathematical
notations and the classical region-based statistical formulation.
After that, we will present the proposed temporally consistent
polar-based local region partitioning strategy, and the proposed
edge-based occlusion handling strategy in detail. In the end,
the details of the non-linear pose optimization step are pre-
sented based on our new energy function.

A. Region-based 3D Object Pose Tracking
We begin by introducing the classical global region-based

model. The global region-based model is depicted in Fig. 3(a).
The RGB image is denoted by I . The image region Ω is
partitioned into a foreground region Ωf and a background
region Ωb = Ω\Ωf . Every pixel x = (x, y)

T ∈ Ω has a
corresponding color vector y = I (x). Every foreground pixel
x ∈ Ωf has a corresponding 3D model point X = (X,Y, Z)

T

in the camera coordinate frame and X0 = (X0, Y0, Z0)
T in the

object coordinate frame. The 3D rigid transformation between
these two coordinate frames is defined by a rotation matrix
R ∈ SO (3) and a translation vector t ∈ R3, which can be en-
coded in a 6-DOF pose vector p = (ω1, ω2, ω3, t1, t2, t3)

T ∈
R6 using Lie algebra representation. Here SO(3) represents
the special orthogonal group, which is the collection of 3D
rotation matrices [52]:

SO (3) =
{
R ∈ R3×3

∣∣RRT = I, det (R) = 1
}

(1)

By combining rotation and translation, we have:

X̃ = T X̃0 =

[
R t
0T 1

]
X̃0 (2)

where T ∈ SE (3) represents the rigid body transform, and the
tilde-notation indicates the homogeneous representation X̃ =
(X,Y, Z, 1)

T . Here SE(3) represents the special Euclidean
group, which is the collection of 3D rigid transformation
matrices [52]:

SE (3) =

{
T =

[
R t
0T 1

]
∈ R4×4 |R ∈ SO (3) , t ∈ R3

}
(3)
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The projection of 3D points into the 2D image plane is
described by:

x = π (KX) (4)

where K ∈ R3×3 is the intrinsic matrix of the camera, and
π (X) = (X/Z, Y/Z)

T . The goal of 6-DOF pose tracking is
to determine the pose parameters p of the object in each video
frame.

In the context of region-based methods, the object in the
image is represented by a level-set embedding function (or
the signed distance function) Φ (x) [5], as shown in Fig. 3(c).
The signed distance function Φ (x) calculates the (signed)
Euclidean distance between a pixel x to its closest contour
point. The projected object contour C is then defined as the
zero level-set C = {x|Φ (x) = 0}. We have Φ (x) < 0 for the
foreground region, and Φ (x) > 0 for the background region.
The foreground and background statistics are usually repre-
sented by a global foreground appearance model P (y|Mf )
and a global background appearance model P (y|Mb), where
y = I (x) is the RGB value of a certain foreground or
background pixel. The conditional distributions P (y|Mf ) and
P (y|Mb) are the likelihoods of a pixel with color y belonging
to foreground or background regions, and are commonly
represented with RGB color histograms. Based on this, the
posterior distributions of foreground and background pixels
could be calculated as [5]:

Pf (x) = P (Mf |y) =
P (y|Mf )

ηfP (y|Mf ) + ηbP (y|Mb)
(5)

Pb (x) = P (Mb|y) =
P (y|Mb)

ηfP (y|Mf ) + ηbP (y|Mb)
(6)

where

ηf =
∑
x∈Ω

He (Φ (x)), ηb =
∑
x∈Ω

(1−He (Φ (x))) (7)

and He is the smoothed Heaviside step function.
Finally the energy function is formulated as [5]:

E(p) = −
∑
x∈Ω

log[He(Φ(x(p)))Pf (x)

+ (1−He(Φ(x(p))))Pb(x)]

(8)

B. Temporally Consistent Polar-based Local Partitioning

As discussed in Section I, the global model is prone to fail
for heterogeneous objects and cluttered background because a
single global model is no longer descriptive enough in these
cases. Hence, we propose a novel local region partitioning
strategy based on polar coordinates. As shown in Fig. 1 and
Fig. 3(b), the global region is partitioned into overlapped fan-
shaped local regions according to the polar coordinates of each
pixel relative to the object center. More specifically, the global
region is first divided into Np local parts, and the i-th part is
defined as:

Ψi =

{
x

∣∣∣∣(i− 1)× 2π

Np
≤ θ (x,xc) < i× 2π

Np

}
(9)

where xc = (xc, yc) is the object center, and i = 1, 2, ..., Np.
θ (x,xc) is the angular element of the polar coordinate of x
relative to xc:

θ (x,xc) =atan2 (x− xc, y − yc) (10)

Here the object center (in the image) xc is calculated as the
projection of the 3D object center Xc onto the image plane:

xc = π (K (RXc + t)) (11)

where R and t are the pose of the current frame. The object
center xc is re-calculated for each new frame as the origin of
the polar coordinate system.

Then, each local region Ωi is defined as the combination of
Ns continuous parts:

Ωi=
⋃

j=0:Ns−1

Ψ mod (i+j−1,Np)+1 (12)

where mod() is the modulo operation, i = 1, 2, ..., Np.
As a result, the global region is partitioned into Np over-

lapped local regions, with each region containing Ns subparts
(Ns = 1 means no overlapping). Two different examples of
our polar-based partitioning results are demonstrated in Fig. 4
with Np = 8, Ns = 2 and Np = 24, Ns = 3.

After the local partitioning, an individual color model could
be calculated in each local region, and the local posteriors are
now computed as:

Pfi (x) = P (Mfi |y) =
P (y|Mfi)

ηfiP (y|Mfi) + ηbiP (y|Mbi)
(13)

Pbi (x) = P (Mbi |y) =
P (y|Mbi)

ηfiP (y|Mfi) + ηbiP (y|Mbi)
(14)

where P (y|Mfi) and P (y|Mbi) are the local color his-
tograms of the i-th region, and

ηfi =
∑
x∈Ωi

He (Φ (x)), ηbi =
∑
x∈Ωi

(1−He (Φ (x))) (15)

Note that as shown in Fig.1 and Fig. 3(b), the local color
histograms are calculated in the limited band around the object
contour with the bandwidth r for better distinctiveness, as with
the other local region-based methods [6], [9].

The next step is to fuse all the local statistical models
and formulate the overall energy function. Similar to [6], [7],
we choose to compute the average posteriors from all local
histograms that the pixels belong to, instead of computing the
average energy over all local regions. The average posterior
maps are calculated as:

P̄f (x) =
1∑Np

i=1 Bi (x)

Np∑
i=1

Pfi (x) Bi (x) (16)
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Fig. 4. Two examples of the proposed overlapped fan-shaped local region partitioning.

P̄b (x) =
1∑Np

i=1 Bi (x)

Np∑
i=1

Pbi (x) Bi (x) (17)

where Bi (x) is the masking function indicating whether a
pixel x belongs to the i-th local region:

Bi (x) =

{
1 ∀x ∈ Ωi

0 ∀x /∈ Ωi
(18)

In our case, each pixel belongs to Ns different regions
(i.e.,

∑Np

i=1 Bi (x) = Ns), and the specific corresponding local
regions can be easily determined according to Eq. (12).

Taking the average posteriors into Eq. (8), we obtain the
energy function for our localized model:

E(p) = −
∑
x∈Ω

log[He(Φ(x(p)))P̄f (x)

+ (1−He(Φ(x(p))))P̄b(x)]

(19)

As with in [6], [7], we call the local histograms tem-
porally consistent because each local histogram (and the
corresponding local image region) is able to be identified
and correctly updated across multiple frames. In [6], [7], the
local histograms could be identified because each of them is
assigned to a 3D model vertex, and the vertex is projected
onto the image in each frame as the center of that histogram
region. In our case, the local histogram regions are identified
simply by the polar coordinates using Eq. (9). Here the only
issue is to build the polar coordinate system in each frame by
projecting the object model center onto the image plane by
Eq. (11). The projected center is then used as the origin of the
polar coordinate system, thus each local region is determined
on the image according to the polar coordinates of the pixels,
ensuring temporal consistency across multiple frames.

The proposed polar-based local region partitioning strategy
has several advantages. Firstly, it is very simple and flexible.

Stable local parts are partitioned using simple polar coordi-
nates in 2D image domain without extra efforts. Moreover,
by changing Np and Ns, we could easily explore the best
settings for the current task according to the scene complexity.
Secondly, it ensures temporal consistency in a much simpler
manner. Instead of assigning each local region to a model
vertex in 3D, we choose to identify the local regions by
the polar coordinates of the pixels in 2D. Here the temporal
consistency is inherently guaranteed along with the stable spa-
tial relationship between the regions across multiple frames.
Thirdly, the overlapped design makes it possible to use more
partitions without the risk of unstable color models caused
by the deficiency of pixel numbers. The overlapped design
also allows to calculate the average posterior membership
probability of each pixel, which could contribute to more
reliable segmentation results [6], [7]. Finally, a much smaller
number of local regions are used in our method while similar
or even better tracking performance is achieved, as will be
demonstrated in the experiment part.

C. Handling Occlusions Using Edge Distance and Color Cues

Occlusion handling is one of the most difficult problems in
3D object pose tracking. Although some strategies have been
proposed in previous works, they are likely to fail in the case of
heavy occlusions. Here we present an efficient new occlusion
handling strategy based on edge distance and color cues. We
add it seamlessly into the region-based tracking pipeline via a
simple weight function.

The idea of using edge distance cues to handle occlusion
is originally introduced in edge-based tracking [11], in which
they assume the occluded object contour points tend to have
a large distance to the nearest image edge. However, this
assumption is only valid when the occluder is poor-textured
and has few inner edges, so that the edge distance cues
will not be affected. For more complex and well-textured
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Video Frame Canny Edge Detector Structured Edge Detector

Fig. 5. Comparison between the edge detection results of the Canny Edge
Detector [53] and the Structured Edge Detector [54]. The Structured Edge
Detector produces better edge maps with less noise, thus is preferred when
the occluder has rich texture.
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Fig. 6. By comparing the color information between the contour point in the
rendered image and its nearest edge point in the video frame, we can further
distinguish occluded point (red) from non-occluded point (green).

occluders, only relying on edge distance cues could sometimes
be misleading. Therefore, we propose to detect the occluded
contour points by using edge distance cues and edge color cues
together. When the edge distance is not fully reliable, the edge
color could be utilized to further distinguish occluded points
from non-occluded points. In most cases, the occluder has
different color with the target object, and we could detect the
occluded point by comparing the color between the contour
point in the rendered image and its nearest edge point in
the video frame. Combining the edge distance cues and the
edge color cues could contribute to a more robust occlusion
handling strategy.

Formally, for each pixel in the evaluation band, we assign
an occlusion-aware weight to it:

w (x) = wd (x)wc (x) (20)

where wd (x) is the weight calculated from edge distance cues,
and wc (x) is the weight calculated from edge color cues.

Firstly, for the edge distance cues, the weight wd (x) is
calculated as:

wd (x) =

{
1−

(
De(x)
c1

)2

if De (x) ≤ c1
0 otherwise

(21)

where De (x) is the distance of x to its nearest edge point x
′

in
the video frame, which could be extracted from the distance
transform (Fig. 2(c)) of the edge map (Fig. 2(b)). c1 is the
maximum valid distance for a pixel to the nearest image edge.

In order to obtain better edge maps with less noise, we
choose to use the random forest-based Structured Edge Detec-
tor [54] instead of simple gradient-based edge detectors (such
as the Canny Edge Detector [53]). Some examples of the edge
maps extracted by the Canny Edge Detector and the Structured
Edge Detector are compared in Fig. 5.

Secondly, the weight for the edge color cues is calculated
as:

wc (x) =

{
1−

(
Dc(x)
c2

)2

if Dc (x) ≤ c2
0 otherwise

(22)

where Dc (x) is the difference between the color of x in the
rendered image and the color of its nearest edge point x

′
in

the video frame: Dc (x) =
∥∥∥Irender (x)− Iframe

(
x

′
)∥∥∥. c2

is the maximum valid color difference.
An example for calculating wc (x) from the edge color cues

is demonstrated in Fig. 6. For an occluded point x1, its nearest
edge point x

′

1 is likely to locate on the occluder, so the color
difference Dc (x1) is large and the weight wc (x1) is small. On
the contrary, for a non-occluded point x2, its nearest edge point
x

′

2 is likely to locate near the same object point corresponding
to x2, so the color difference Dc (x2) is small and the weight
wc (x2) is large. By incorporating the edge color cues, the
influence of the occluded points could be further reduced even
when the edge distance cues are not fully reliable.

After calculating the weights for the object contour points,
we spread the weights through the normal direction of the
object contour, so that every pixel in the evaluation band
(typically ±8 pixels around the object contour as in previous
works) gets its occlusion-aware weight according to its nearest
object contour point. Combining the proposed occlusion-aware
weight function with the region-based method leads to a
slightly different energy function:

E(p) = −
∑
x∈Ω

w(x) log[He(Φ(x(p)))P̄f (x)

+ (1−He(Φ(x(p))))P̄b(x)]

(23)

This is the final energy function we use for 6-DOF pose
optimization. With this occlusion-aware weight function, a
non-occluded pixel in the evaluation band would be assigned
with a large weight, and an occluded pixel in the evaluation
band would be assigned with a small weight. Therefore, the
influence of the occluded pixels could be minimized, which
improves the robustness of our method to partial occlusions.

D. Pose Optimization

To solve the complex non-linear optimization problem, we
use a similar Gauss-Newton-based pose optimization strategy
as in [7] by rewriting the energy function Eq. (23) as a non-
linear iteratively re-weighted least squares problem:

E (p) =
1

2

∑
x∈Ω

ψ (x)F 2 (x,p) (24)

where
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F (x,p) = −w(x) log[He(Φ(x(p)))P̄f (x)

+ (1−He(Φ(x(p))))P̄b(x)]
(25)

and ψ (x) = 1
F (x,p) .

Then the non-linear optimization problem could be itera-
tively solved by fixing and alternatingly updating the weights
ψ (x). The Jacobian is calculated as:

J (x) =
∂F (x,p)

∂p

= −w (x)
P̄f − P̄b

He (Φ (x)) P̄f + (1−He (Φ (x))) P̄b

× ∂He (Φ (x))

∂p

(26)

and

∂He (Φ (x))

∂p
=
∂He

∂Φ

∂Φ

∂x

∂x

∂p
(27)

where ∂He

∂Φ = δe (Φ) is the smoothed Dirac delta function,
∂Φ
∂x =

[
∂Φ
∂x ,

∂Φ
∂y

]
is calculated using centered finite differences.

∂x
∂p can be derived from eqs. (2, 4), and the details can be found
in [7], [9].

The Hessian is then approximated using first-order deriva-
tives [7]:

H (x) = ψ (x) J(x)
T
J (x) (28)

which leads to the optimal Gauss-Newton update step:

∆p = −

(∑
x∈Ω

H (x)

)−1 ∑
x∈Ω

J(x)
T (29)

IV. EXPERIMENTS

In the following we provide an extensive evaluation of
the proposed method. We first clarify some details in our
implementation. Then we do a careful ablation study on Rigid
Pose Dataset [47] to validate the effectiveness of the proposed
new strategies. This is followed by a comprehensive evaluation
on the very recent RBOT Dataset [7], in which we compare our
results with the most recent state-of-arts. Finally, we test our
method on two real-world datasets, the Dense Tracking Dataset
[55] and the OPT Dataset [48], to show the performance of our
method on real data. For all of the experiments, a commodity
desktop computer with Intel i7 quad core CPU @4.0GHz and
NVIDIA GeForce GTX970 GPU is used. Our method runs at
20-25Hz using CPU (with GPU used only for rendering).

A. Implementation Details

We generally use similar parameter settings as the recent
region-based methods [6], [7], [19]. After successfully tracking
the k-th frame, the local color histograms are updated as:

P (y|Mfi) = (1− αf )P k−1 (y|Mfi) +αfP
k (y|Mfi) (30)

P (y|Mbi) = (1− αb)P
k−1 (y|Mbi) + αbP

k (y|Mbi) (31)

and the learning rates are set to αf = 0.1 and αb = 0.2 as in
[7].

The region radius r in Fig. 1(b) is set to r = 40 based
on the results of [9] (we observe similar performance using
r = 32 ∼ 64).

The smoothed Heaviside function in Eq. (23) is defined as:

He (Φ (x)) =
1

π

(
−atan (sΦ (x)) +

π

2

)
(32)

and the smoothed Dirac delta function δe (Φ (x)) is derived
from He (Φ (x)):

δe (Φ (x)) =
∂He (Φ (x))

∂Φ
= − s

π (1 + s2Φ2 (x))
(33)

where we use s = 1.2 as in [7].
The threshold c1 in Eq. (21) is set to 20 as in [11], and c2

in Eq. (22) is set to 80.
We have also tried different settings of the local region

partitioning parameter Np and Ns, and found that Np =
24, Ns = 3 produces the best results in the evaluated datasets.
More details are presented in Section IV-B.

B. Ablation Study on Rigid Pose Dataset

We choose to perform the ablation study on Rigid Pose
Dataset [47]. This dataset provides semi-synthetic video se-
quences of 6 different objects under a variety of realistic
conditions. The dataset composes of original sequences, noisy
sequences and occluded sequences (18 video sequences in
total). These sequences are featured with wide-range rotation
and translation, object variability and background cluttering.
Specifically, for the noisy sequences, random Gaussian noise
(σ = 0.1) is added separately to each color channel in order
to test the robustness of the tracker to image noise. For the
occluded sequences, another randomly moving object is added
to the video frames, which creates realistic occlusion to the
first object.

We use the same evaluation metric as in [47]. The error
is measured by the largest distance between corresponding
vertices transformed by the estimated and the ground-truth
poses [47]: e (p) = max

j
‖(Rvj + t)− (Rgtvj + tgt)‖, where

vj is a vertex of the 3D object model. A frame is successfully
tracked if e(p) is smaller than a threshold (we use 10mm as in
[47]). Otherwise, we consider the tracker to be lost and reset it
with the ground-truth pose. We measure the tracking success
rate (SR) throughout the entire sequence, which is defined
as the proportion of frames that are successfully tracked (in
%): SR = Nsuccess/Nframes × 100%, where Nsuccess is the
number of frames that are successfully tracked and Nframes

is the total number of frames in the sequence.
Firstly, we demonstrate the influence of the region par-

titioning parameters (Np, Ns) by evaluating on the original
sequences of Rigid Pose Dataset. We test 10 different settings
of (Np, Ns), and the results are shown in Table I. We list the
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TABLE I
EVALUATION RESULTS USING DIFFERENT Np AND Ns ON THE ORIGINAL SEQUENCES OF RIGID POSE DATASET. (TRACKING SUCCESS RATE IN %, BEST

SCORES ARE IN BOLD.)

Np 1 4 8 16 24 32 48 48 64 128
Ns 1 1 2 2 3 3 1 6 6 16
soda 58.5 59.7 58.7 60.1 61.9 60.4 54.6 61.8 60.8 61.6
soup 88.9 88.6 89.1 88.6 89.8 87.9 83.6 89.1 88.1 89.6

clown 94.5 95.6 95.1 95.7 96.6 95.9 87.4 96.4 95.9 96.6
candy 71.3 73.0 72.7 72.7 74.1 73.0 68.1 73.7 73.2 73.9
cube 87.4 89.1 89.1 89.4 90.6 89.2 81.4 90.4 89.4 90.4
edge 92.2 91.5 91.0 92.0 93.2 92.0 87.7 92.8 92.3 93.0

average 82.1 82.9 82.6 83.1 84.4 83.1 77.1 84.0 83.3 84.2

TABLE II
ABLATION STUDY ON RIGID POSE DATASET. LOC: METHODS WITH THE PROPOSED LOCAL REGION PARTITIONING STRATEGY. OCC: METHODS WITH

THE PROPOSED OCCLUSION DETECTION STRATEGY. (TRACKING SUCCESS RATE IN %, BEST SCORES ARE IN BOLD.)

Method soda soup clown candy cube edge average
Loc Occ ori noi occ ori noi occ ori noi occ ori noi occ ori noi occ ori noi occ

57.3 53.8 41.0 88.6 85.3 65.5 95.2 92.7 72.0 71.7 61.8 53.9 87.5 83.8 61.6 92.2 89.6 67.6 73.4√
61.9 57.2 41.1 89.8 87.7 67.2 96.2 94.0 71.0 73.2 64.0 56.0 90.6 84.0 65.2 93.2 90.4 66.6 75.0√
58.5 54.8 48.5 88.9 85.2 75.9 94.5 91.8 80.4 71.3 62.3 64.9 87.4 82.9 72.9 92.2 89.9 78.7 76.7√ √
61.9 56.5 48.5 89.8 90.1 75.1 96.6 93.2 79.0 74.1 63.1 65.0 90.6 84.0 72.9 93.2 90.8 77.3 77.9

SR scores of each sequence for different settings. The tracking
performance generally improves with local partitioning, and
the setting of (Np = 24, Ns = 3) produces the best tracking
performance consistently in all the 6 sequences. Similar SR
scores are achieved with larger number of partitions (such as
(Np = 128, Ns = 16)) at the expense of more computation,
thus is not preferred. Moreover, the results indicate that the
overlapped design is crucial in the proposed local region parti-
tioning strategy. The tracking performance greatly deteriorates
when the global region is divided into a large number of
partitions but the local regions are not overlapped (such as
(Np = 48, Ns = 1)). The reason is that, in this case, each
local region does not contain enough pixels for maintaining
a stable statistical model, as discussed in previous sections.
As a result, we choose to use (Np = 24, Ns = 3) in all the
following experiments.

Secondly, in order to validate the effectiveness of the two
new strategies proposed in this paper, we have tested 4
different versions of the method on the whole Rigid Pose
Dataset. The tested methods are 4 variants of our method w/
or w/o the local partitioning and occlusion handling strate-
gies respectively. The tracking success rates are presented
in Table II. The results show that the proposed local region
partitioning and occlusion handling strategies are effective, and
generally improve the robustness of our tracker. Specifically
speaking, the local region partitioning strategy contributes to
higher tracking success rates especially for the original and
noisy sequences, and the occlusion handling strategy helps to
improve the tracking performance on occluded sequences by a
large margin. Finally, the method with both the proposed local
region partitioning and occlusion detection strategies obtains
the best average SR score, confirming the effectiveness of the
two new strategies.

C. Evaluation on RBOT Dataset

Next, we present a comprehensive evaluation on the very
recent RBOT Dataset [7] and compare our results with

Ape Baking Soda Bench Vise Broccoli Soup Camera Can

Cat Clown Cube Driller Duck Egg Box

Glue Iron Koala Candy Lamp Phone Squirrel

Fig. 7. The 18 objects models used in RBOT Dataset. Figures are adapted
from [7].

the recent state-of-art approaches. The RBOT (Region-based
Object Tracking) Dataset is a large semi-synthetic dataset
containing 72 video sequences with a total number of 72000
video frames. The dataset composes of 4 different variants
of videos: regular, dynamic light, noisy, and occlusion. The
first variant (regular) is rendered using a static point light
source. The second variant (dynamic light) is rendered with
a dynamic light source in order to evaluate the robustness
of the tracker to lighting variations. The third variant (noisy)
further adds artificial Gaussian noise to the images. And the
fourth variant (occlusion) contains an additional second object
which frequently occludes the first object. A total of 18 objects
are used in RBOT Dataset, including both heterogeneous and
texture-less objects, as shown in Fig. 7. We use the same
evaluation metric as in [7]. The rotation and translation errors
are calculated separately as:

e (R) = cos−1

(
trace

(
RTRgt

)
− 1

2

)
(34)
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TABLE III
EVALUATION RESULTS ON RBOT DATASET. REG: REGULAR; DYN: DYNAMIC LIGHT; NOI: NOISY; OCC: OCCLUSION. (TRACKING SUCCESS RATE IN

%, BEST SCORES ARE IN BOLD.)
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ICCV17 [6] 62.1 30.5 95.8 66.2 61.6 81.7 96.7 89.1 44.1 87.7 74.9 50.9 20.2 68.4 20.0 92.3 64.9 98.5 67.0
TPAMI19 [7] 85.0 39.0 98.9 82.4 79.7 87.6 95.9 93.3 78.1 93.0 86.8 74.6 38.9 81.0 46.8 97.5 80.7 99.4 79.9
IJCV19 [19] 82.6 40.1 92.6 85.0 82.8 87.2 98.0 92.9 81.3 84.5 83.3 76.2 56.1 84.6 57.6 90.5 82.6 95.6 80.8

Ours 88.8 41.3 94.0 85.9 86.9 89.0 98.5 93.7 83.1 87.3 86.2 78.5 58.6 86.3 57.9 91.7 85.0 96.2 82.7

D
Y
N

ICCV17 [6] 61.7 32.0 94.2 66.3 68.0 84.1 96.6 85.8 45.7 88.7 74.1 56.9 29.9 49.1 20.7 91.5 63.0 98.5 67.0
TPAMI19 [7] 84.9 42.0 99.0 81.3 84.3 88.9 95.6 92.5 77.5 94.6 86.4 77.3 52.9 77.9 47.9 96.9 81.7 99.3 81.2
IJCV19 [19] 81.8 39.7 91.5 85.1 82.6 87.1 98.1 90.7 79.7 87.4 81.6 73.1 51.7 75.9 53.4 88.8 78.6 95.6 79.0

Ours 89.7 40.2 92.7 86.5 86.6 89.2 98.3 93.9 81.8 88.4 83.9 76.8 55.3 79.3 54.7 88.7 81.0 95.8 81.3

N
O
I

ICCV17 [6] 55.9 35.3 75.4 67.4 27.8 10.2 94.3 33.4 8.6 50.9 76.3 2.3 2.2 18.2 11.4 36.6 31.3 93.5 40.6
TPAMI19 [7] 77.5 44.5 91.5 82.9 51.7 38.4 95.1 69.2 24.4 64.3 88.5 11.2 2.9 46.7 32.7 57.3 44.1 96.6 56.6
IJCV19 [19] 80.5 35.0 80.9 85.5 58.4 53.5 96.7 65.9 38.2 71.8 85.8 29.7 17.0 59.3 34.8 61.1 60.8 93.6 61.6

Ours 79.3 35.2 82.6 86.2 65.1 56.9 96.9 67.0 37.5 75.2 85.4 35.2 18.9 63.7 35.4 64.6 66.3 93.2 63.6

O
C
C

ICCV17 [6] 55.2 29.9 82.4 56.9 55.7 72.2 87.9 75.7 39.6 78.7 68.1 47.1 26.2 35.6 16.6 78.6 50.3 77.6 57.5
TPAMI19 [7] 80.0 42.7 91.8 73.5 76.1 81.7 89.8 82.6 68.7 86.7 80.5 67.0 46.6 64.0 43.6 88.8 68.6 86.2 73.3
IJCV19 [19] 77.7 37.3 87.1 78.7 74.6 81.0 93.8 84.3 73.2 83.7 77.0 66.4 48.6 70.8 49.6 85.0 73.8 90.6 74.1

Ours 83.9 38.1 92.4 81.5 81.3 85.5 97.5 88.9 76.1 87.5 81.7 72.7 52.2 77.2 53.9 88.5 79.3 92.5 78.4

e (t) = ‖t− tgt‖2 (35)

The object is considered to be successfully tracked if e (t)
is below 5cm and e (R) below 5◦. Otherwise the tracker is
considered to be lost and is automatically reset to the ground
truth. Then we also measure the tracking success rate (SR) of
each sequence as the proportion of frames that are successfully
tracked (in %).

We compare the results of our method with the three
most recent state-of-art region-based methods: ICCV17 [6],
TPAMI19 [7] and IJCV19 [19]. Among them, ICCV17 [6] and
TPAMI19 [7] are the only two methods having been evaluated
on this dataset before, and we test IJCV19 [19] on this dataset
using the code provided by the author.

The evaluation results are summarized in Table III. Our
method obtains the best SR scores on 50 out of the 72 videos.
In particular, for the occluded sequences, our method obtains
the best SR scores on 16 out of the 18 sequences, which proves
the superiority of the proposed edge-based occlusion handling
strategy. Moreover, we also achieve the best average SR scores
on all of the 4 video variants. The experimental results have
further demonstrated the robustness of our method against
the state-of-art region-based methods, thanks to the proposed
novel local region partitioning strategy and occlusion handling
strategy. More specifically, our method obtains similar or
even better tracking performance using much less number
of local regions, and the occlusion handling strategy helps
to significantly improve the robustness in partial occlusion
scenarios. Some sample frames from the 4 video variants of
RBOT Dataset and the corresponding tracking results of our
method are demonstrated in Fig. 8.

D. Evaluation on Real-world Datasets
We have demonstrated the performance of our method on

semi-synthetic datasets in Section IV-B and Section IV-C. In
order to show the capability of our method for real data, we
further test our method on two real-word datasets: the Dense
Tracking Dataset [55] and the OPT Dataset [48].

TABLE IV
EVALUATION RESULTS ON DENSE TRACKING DATASET. (TRACKING

SUCCESS RATE (IN %), BEST SCORES ARE IN BOLD.)

Method Exp#1 Exp#2 ATLAS#1 ATLAS#2
CVPR14 [55] 98.4 97.5 100 39.4

TCSVT18 [26] 100 99.7 100 85.1
IJCV19 [19] 99.7 98.4 90.1 78.8

Ours 100 98.6 100 87.3

1) Dense Tracking Dataset: The Dense Tracking Dataset
[55] provides real-world video sequences in two challenging
environments, including a complex industrial environment,
as shown in Fig. 9. The videos contain strong moving
light sources, bright specularities (both foreground and back-
ground), and motion blurs.

We use the same evaluation metric as in [55]. A rotation
error and a translation error are also computed separately the
same as Eqs. (34), (35). But here the thresholds are set to 4◦

(0.07 radians) and 5cm as in [55]. The tracking success rate
(SR) is measured as described in Section IV-B and Section
IV-C.

The evaluation results are shown in Table IV. We compare
the performance of our method with the other three state-of-
art methods (CVPR14 [55], TCSVT18 [26] and IJCV19 [19])
since they have reported their results on this dataset. The
results show that our method achieves competitive tracking
performance with these methods on this real-world dataset.
More specifically, the proposed method consistently outper-
forms CVPR14 [55] and IJCV19 [19], especially for the most
difficult sequence (ATLAS #2). TCSVT18 [26] also performs
very well on this dataset, and obtains similar results with us.
The reason is that they incorporate a specifically designed
illumination estimation module in their method, which is very
beneficial for this dataset since fast illumination change is one
of the main challenges.

2) OPT Dataset: In the end, we evaluate our method
on another real-world dataset, OPT Dataset [48]. The OPT
Dataset is a large 6-DOF object pose tracking dataset, which
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Regular Dynamic Light Noisy Occlusion

Fig. 8. Some sample frames from the 4 video variants of RBOT Dataset and the corresponding tracking results. For each video variant, the first row shows
the input images, and the second row shows the tracking results of our method. The tracking results are illustrated by rendering the 3D object models with
the tracked 6-DOF pose in green. (Zoom in for better view.)

TABLE V
EVALUATION RESULTS ON OPT DATASET (AUC SCORES, HIGHER IS BETTER, BEST SCORES ARE IN BOLD, SECOND-BEST SCORES ARE UNDERLINED.)

Method bike chest house ironman jet soda average
PWP3D [5] 5.358 5.551 3.575 3.915 5.813 5.870 5.014
UDP [56] 6.097 6.791 5.974 5.250 2.342 8.494 5.825

ElasticFusion [57] 1.567 1.534 2.695 1.692 1.858 1.895 1.874
ORB-SLAM2 [58] 10.410 15.531 17.283 11.198 9.931 13.444 12.966

TPAMI19 [7] 11.903 11.764 10.150 11.986 13.217 8.861 11.314
Ours 12.831 12.240 13.613 11.214 15.441 9.012 12.392

Exp ATLAS

Fig. 9. Two challenging environments in Dense Tracking Dataset [55].

contains 552 real-world sequences of six 3D objects (bike,
chest, house, ironman, jet and soda). These sequences are
classified into seven different types (translation, zoom in and
zoom out, in-plane rotation, out-of-plane rotation, flashing
light, moving light and free motion) with different moving
speed.

To compare the results of our method to [7] and those
provided in [48], we use the same evaluation metric as
in [7], [48]. The tracking error is measured by the av-
erage distance between corresponding vertices transformed
by the estimated and the ground-truth poses: e (p) =
avg
j
‖(Rvj + t)− (Rgtvj + tgt)‖, where vj is a vertex of

the 3D object model. A frame is successfully tracked if e(p)

is smaller than ked where d is the diameter of the object,
and ke is a tunable coefficient. Then the tracking success
rates (SR) are measured by varying ke ∈ [0, 0.2]. Finally, the
overall tracking performance is computed in form of an AUC
(area under curve) score, where the SR scores (0∼100) are
integrated for all ke ∈ [0, 0.2] (so the AUC score is between
0∼20, higher is better). More details of the evaluation protocol
on OPT Dataset could be found in [48].

In Table V, we compare our results with 5 other methods
available for this dataset: PWP3D [5], the classical region-
based 3D object pose tracking method; UDP [56], a monocular
3D object detection method; ElasticFusion [57], a visual
SLAM approach which relies on RGB-D data; ORB-SLAM2
[58], another visual SLAM approach which uses gradient-
based features; TPAMI19 [7], one of the most recent state-of-
art region-based 3D object pose tracking methods. The results
show that the proposed method performs significantly better
than PWP3D, UDP and ElasticFusion, and obtains comparable
results with ORB-SLAM2 and TPAMI19. Among the evalu-
ated 6 objects, our method obtains 2 best AUC scores and 4
second-best AUC scores. The average score of our method
ranks second, and is very close to that of ORB-SLAM2.
Here ORB-SLAM2 performs especially well for chest, house
and soda because these objects are relatively well-textured
which is beneficial for feature-based methods. Besides, the
symmetrical structure of soda also makes it difficult for region-
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based methods such as TPAMI19 and our method.

E. Discussions

1) Limitations of Our Method: Although we have demon-
strated the capability of our method on both semi-synthetic
and real-world datasets, it still has some limitations.

Firstly, the proposed occlusion detection strategy is able to
handle certain degrees of partial occlusion, but would still
fail for heavy occlusions. When major parts of the object
are occluded, it is very difficult to precisely estimate the 6-
DOF pose with only monocular input. Nevertheless, we plan
to study this problem by utilizing deep neural networks to
interpret the information behind the occluder in our future
works.

Secondly, although we have incorporated both the edge
distance cues and the edge color cues to further improve the
robustness of the proposed occlusion handling strategy, it still
has some limitations. For example, when the occluder has a lot
of inner edges, and also has similar color with the target object,
the proposed strategy would fail to detect the occluded points.
However, this case does not frequently happen, and the pro-
posed strategy works well in most common cases. Experiments
have also shown that our method performs significantly better
than the state-of-arts on occluded sequences (as discussed in
Section IV-C), which proves the effectiveness of the proposed
occlusion detection strategy.

Thirdly, an efficient 3D object detection module is yet to
be developed for pose initialization and reset. In this paper,
we mainly focus on robust frame-to-frame pose tracking. The
3D object detection methods (such as the ones discussed
in Section II-C-2) could be combined with our method to
build a more complete solution. Specifically, for light-weight
applications, template-based 3D detection methods (such as
LINE-2D [38] and tclc-histograms [6]) could be utilized.
When GPU is available, deep learning-based methods (such
as [44], [46]) could be incorporated for better performance.

2) Runtime Performance: We compare the runtime of our
method with some of the other state-of-art methods evaluated
in our experiments in Table VI. The numbers are taken from
the corresponding papers or from our evaluation. The average
runtime of our method is 41.2 ms per frame, which is a little
higher than [6] and [7]. The main reason is the inclusion of the
occlusion detection step in our method, which takes about 15
ms per frame. We believe this part could be further optimized
in our future work. Moreover, the proposed method is faster
than ORB-SLAM2 [58] although ORB-SLAM2 performs rel-
atively better on OPT Dataset.

TABLE VI
RUNTIME PERFORMANCE. (PER FRAME IN MS)

Method Runtime
CVPR14 [47] 91.8
ICCV17 [6] 12.5∼33.3

TCSVT18 [26] 129.6
TPAMI19 [7] 15.5∼21.8
IJCV19 [19] 47.0

ORB-SLAM2 [58] 67.0
Ours 41.2

V. CONCLUSION

In this paper, we have proposed two novel strategies trying
to tackle the two main challenges of region-based 6-DOF
object tracking: (1) A novel temporally consistent polar-based
local region partitioning strategy for more robust tracking in
heterogeneous situations; (2) An efficient edge-based occlu-
sion detection strategy for handling partial occlusions. By
incorporating these two novel strategies into the state-of-art
region-based scheme, we have presented a robust occlusion-
aware local region-based 6-DOF object tracker. A comprehen-
sive evaluation shows that our method achieves competitive or
better tracking performance compared to the recent state-of-
arts, especially in dealing with partial occlusions.
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pose estimation of 3d objects using temporally consistent local color
histograms,” in International Conference on Computer Vision (ICCV),
2017, pp. 124–132.

[7] H. Tjaden, U. Schwanecke, E. Schömer, and D. Cremers, “A region-
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