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Abstract Both region-based methods and direct methods
have become popular in recent years for tracking the 6-dof
pose of an object from monocular video sequences. Region-
based methods estimate the pose of the object by maximiz-
ing the discrimination between statistical foreground and back-
ground appearance models, while direct methods aim to min-
imize the photometric error through direct image alignment.
In practice, region-based methods only care about the pix-
els within a narrow band of the object contour due to the
level-set-based probabilistic formulation, leaving the fore-
ground pixels beyond the evaluation band unused. On the
other hand, direct methods only utilize the raw pixel in-
formation of the object, but ignore the statistical proper-
ties of foreground and background regions. In this paper,
we find it beneficial to combine these two kinds of methods
together. We construct a new probabilistic formulation for
3D object tracking by combining statistical constraints from
region-based methods and photometric constraints from di-
rect methods. In this way, we take advantage of both statisti-
cal property and raw pixel values of the image in a comple-
mentary manner. Moreover, in order to achieve better per-
formance when tracking heterogeneous objects in complex
scenes, we propose to increase the distinctiveness of fore-
ground and background statistical models by partitioning the
global foreground and background regions into a small num-
ber of sub-regions around the object contour. We demon-
strate the effectiveness of the proposed novel strategies on
a newly constructed real-world dataset containing differen-
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t types of objects with ground-truth poses. Further experi-
ments on several challenging public datasets also show that
our method obtains competitive or even superior tracking
results compared to previous works. In comparison with the
recent state-of-art region-based method, the proposed hybrid
method is proved to be more stable under silhouette pose
ambiguities with a slightly lower tracking accuracy.

Keywords 3D object tracking · Region-based method ·
Direct method · Statistical constraints · Photometric
constraints

1 Introduction

3D object pose tracking is an essential problem in computer
vision (Lepetit and Fua, 2005). It is the basic problem for
augmented reality applications (Lima et al, 2010; Park et al,
2008), and is also widely used in robotic perception tasks
(Choi and Christensen, 2010). In recent years, region-based
methods (Prisacariu and Reid, 2012; Hexner and Hagege,
2016; Ren et al, 2017) and direct methods (Crivellaro and
Lepetit, 2014; Seo and Wuest, 2016; Zhong et al, 2017) have
gained increasing popularity because of their ability to track
different kinds of objects in complex environment. Both t-
wo kinds of methods assume a known 3D object model and
try to track the 6-dof pose of the object in monocular video
sequences, but they extract and utilize very different infor-
mation from the images:

Region-based methods focus on the statistical properties
of different image regions. They iteratively evolve the pro-
jected 2D contour of the 3D object model by optimizing the
pose parameters, aiming to maximize the statistical discrep-
ancy between the foreground region and the background re-
gion (Prisacariu and Reid, 2012; Tjaden et al, 2016). Region-
based methods are especially suitable for tracking homoge-
neous objects in simple environment, in which case the s-
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Fig. 1: Illustration of the proposed method. (a) We want to
track the 6-dof pose of the box. (b) Traditional region-based
methods use global foreground region and background re-
gion models. We call the ±32 pixels band as ‘histogram
band’ since it is used for color histogram calculation. (c) We
propose to partition the global foreground and background
regions into a small number of sub-regions around the ob-
ject contour. F1∼F4: Partitioned local foreground; B1∼B4:
Partitioned local background. (d) The final model we pro-
pose in this paper. We further make use of the interior re-
gion and apply photometric constraints to the whole object
region (more details in Fig. 4), resulting in a robust hybrid
3D object tracker.

tatistical properties of foreground and background are dis-
tinctively different. However, in more complex situations,
such as tracking heterogeneous objects in cluttered back-
ground, the performance would strongly degrade due to the
variation of foreground and background statistics (Hexner
and Hagege, 2016). Moreover, region-based methods suf-
fer from pose ambiguities because they determine the 3D
object pose only from 2D silhouette information. For ex-
ample, region-based methods would fail when tracking a
symmetrical object, because the projected silhouette will not
change when the object rotates around its symmetrical ax-
is (Prisacariu and Reid, 2012). (In contrast, direct methods
would succeed in tracking a symmetrically shaped object,
provided that the object has varying texture.) These failing
cases indicate that using only statistical information is not
sufficient for robust pose tracking in complex situations.

On the contrary, direct methods focus on raw pixel val-
ues instead of image statistics. They optimize the pose pa-
rameters by directly and densely aligning consecutive video
frames over a 3D object model to minimize the photometric
error of corresponding object foreground pixels. The most
important assumption of direct methods is photometric con-

Table 1: Comparison of region-based methods and direct
methods. The complementarity of these two kinds of meth-
ods makes it reasonable and beneficial to combine them to-
gether. In this paper, we take advantage of both methods and
propose a robust hybrid 3D object tracker.

Region-based Method Direct Method

Constraints Statistical constraints Photometric constraints

Utilized
information

Statistical information of 
image regions 

Raw pixel values

Utilized pixels Pixels around the contour Pixels inside the contour

Considered region Foreground and background Foreground only

Good at tracking
Homogeneous / texture-less 
objects

Heterogeneous / well-
textured objects

Failure cases
Heterogeneous objects in 
complex background,
Symmetrical objects 

Illumination changes, purely 
texture-less objects

Recover from pose 
drifts

Yes No

stancy, which assumes that the corresponding pixels between
consecutive frames have the same pixel value. However, this
assumption is often violated by illumination changes or sur-
face reflectance properties (Zhong et al, 2017). Besides, al-
though direct methods are able to track poor-textured object-
s, they still favor a certain amount of pixel value variations,
because the pose optimization procedure relies on the im-
age gradient. This is also quite different from region-based
methods, which favor totally texture-less objects. Based on
the above observations, we think using only photometric
constraints is also not the optimal choice.

To resolve the above problems when using only region-
based methods or direct methods alone, we propose a hybrid
3D object tracker which takes advantage of both two kind-
s of methods by applying statistical constraints and photo-
metric constraints to different image regions, as shown in
Fig. 1(d). We partition the image into several foreground-
background sub-region pairs and a single interior region. For
each foreground-background sub-region pair, we apply sta-
tistical constraints based on the partitioned local statistical
models. This would make the object contour evolve in the
right direction to best fit the local foreground-background
statistics. For the object region (including the interior re-
gion and the local foreground regions), we apply photomet-
ric constraints by minimizing the pixel value difference be-
tween consecutive frames. In this way, we properly utilize
the information of the interior region, which region-based
methods completely ignore during optimization (due to the
smoothed Dirac delta function in gradient calculation (Prisacar-
iu and Reid, 2012)).

Very few previous works have mentioned the integration
of region-based methods and direct methods. We compare
the different characteristics of these two kinds of methods
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Fig. 2: An example of failure cases for region-based method-
s. When a symmetrical coffee can rotates around its vertical
axis, the projected contour (shown in yellow) in the image
does not change, which leads to wrong pose estimations for
region-based methods. In this case, the correct pose could be
determined by adding in photometric constraints in the pro-
posed method, since the appearance (pixel values) changes
while rotating.

in Table 1 and detail the complementary properties of these
two kinds of methods as follows:

Direct methods help region-based methods: Firstly, image
statistics are not very reliable in complex scenes, where the
statistical models of foreground region and background re-
gion tend to be very similar. In this situation, it would be
beneficial to add in photometric constraints from direct meth-
ods because they are based on raw pixel values and could
help to alleviate the statistical confusion. Secondly, region-
based methods are inherently not suitable for tracking the
pose of symmetrical objects because different 3D poses would
result in the same 2D contour (Prisacariu and Reid, 2012).
As shown in Fig. 2, when a cylindrical object rotates around
its vertical axis, the projected contour does not change at al-
l, which means region-based methods are very likely to fail
in tracking its pose. However, the pixel values (or texture)
of the object change continuously while rotating, so the cor-
rect object pose could be determined from photometric con-
sistency. Thirdly, as mentioned above, region-based meth-
ods ignore the interior region during pose optimization. As
shown in Fig. 3, the smoothed Dirac delta function indicates
the influence (or weights) of pixels in the gradient calcula-
tion. For pixels outside a narrow evaluation band (±8 pix-
els in most previous works), the influence drops to below
5% of the center pixel. Moreover, the foreground and back-
ground regions for statistical model calculation and updat-
ing are often chosen as local regions around the object con-
tour (e.g. ±32 pixels) for distinctiveness, as shown in Fig.
1(b). This means a large number of pixels inside the object
contour (i.e. beyond +32 pixels) are completely unused in
region-based methods, which is a waste of information. By
introducing photometric constraints, these pixels are prop-
erly utilized and would contribute to a more robust tracking
algorithm. Based on the above observations, the proposed
hybrid method would be more stable compared to region-
based methods when encountering silhouette pose ambigu-
ities or similar foreground-background statistics. For exam-

±8±8

Contour
Dirac Func

Eval Line

Statistical

Photometric

Fig. 3: Analysis of a single horizontal line in the image. Left:
We analyze the pixels in a single line (red) of the image
frame. Right: Distance transform (Φ (x)) and other anno-
tations: (1) Contour: The image contour, which is the zero
level-set (Φ (x)=0). (2) Dirac Func: Plot of the smoothed
Dirac delta function (δe (Φ), detailed in Sect. 3.4), which
determines the weights of the pixels in the gradient calcu-
lation of region-based methods. (3) Eval Line: We take this
red line as an example of the energy evaluation process. (4)
Statistical: Pixels used for statistical energy evaluation and
minimization in our implementation, which locate in a ±8
pixels evaluation band around the contour. (5) Photomet-
ric: Pixels used for photometric constraints in our method,
which are all the pixels inside the object contour.

ple, our method is shown to be more stable compared to the
recent state-of-art region-based method (Tjaden et al, 2017)
with a slightly lower tracking accuracy. More details will be
discussed in the experiment part.

Region-based methods help direct methods: On the other
hand, region-based methods also help direct methods in the
following aspects. Firstly, raw pixel values are not reliable
when the photometric constancy assumption is violated. For
example, when the illumination changes, corresponding pix-
els in neighbouring frames may not share the same values,
which would disrupt the direct tracking method (Seo and
Wuest, 2016). This is partly because direct methods only
use raw pixel values of the foreground region. They ignore
the background region, and also the image statistics. This is-
sue could be alleviated by introducing statistical constraints
from region-based methods, because image statistics are rel-
atively more stable than raw pixel values in the case of illu-
mination changes. Secondly, direct methods rely on image
gradients during pose optimization, and are not very suit-
able for tracking purely homogeneous objects. Just on the
contrary, region-based methods are especially good at track-
ing purely homogeneous objects, which would be of help
to direct methods when there are hardly any image gradi-
ents in the object region. Thirdly, direct methods are inher-
ently not able to recover from pose drifts. When there is a
small pose drift caused by a slightly inaccurate tracking re-
sult, direct methods would mistake the involved background
pixels as new foreground pixels. As a result, the pose drifts
would accumulate with time and finally lead to tracking fail-
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ure (Zhong et al, 2017). In this case, the wrongly involved
background pixels could be excluded by region-based meth-
ods according to the different statistical distributions of fore-
ground and background regions. So region-based method-
s could help direct methods in recovering from small pose
drifts.

To conclude, region-based methods rely on image statis-
tics and ignore raw pixel values, especially for the interi-
or region. Direct methods rely on raw pixel values and ig-
nore the foreground-background statistical information. The
complementarity of these two kinds of methods makes it
reasonable and beneficial to combine them together.

The main contributions of this paper are:
1. We propose a robust hybrid 3D object pose track-

ing method by combining statistical constraints from region-
based methods and photometric constraints from direct meth-
ods. Our new probabilistic formulation leverages both statis-
tical information and photometric information of the image
in a complementary way, resulting in a robust hybrid 3D ob-
ject pose tracker. To the best of our knowledge, we are the
first to combine region-based methods and direct methods in
a unified 3D object tracking framework.

2. We improve the performance of our method in com-
plex scenes by partitioning the global foreground and back-
ground into local sub-region pairs. The partitioned local fore-
ground and background statistical models are more distin-
guishable for heterogeneous objects and cluttered background,
which further increases the robustness of the proposed hy-
brid tracker.

2 Related Work

A large number of 3D object tracking methods have been
proposed in the past several decades (Lepetit and Fua, 2005).
These methods can be classified into four major categories:
feature-based methods, edge-based methods, region-based
methods and direct methods. Feature-based methods require
sufficient texture on the object surfaces in order to extract
enough number of keypoints to establish feature correspon-
dences, thus they are not able to deal with poor-textured ob-
jects. Edge-based methods rely on strong edges, so that they
often struggle with the numerous local minima, especially
when encountering cluttered background and sensor noise
(Hexner and Hagege, 2016). In recent years, region-based
methods and direct methods have become popular because
of their capability to deal with these drawbacks. In the fol-
lowing, we mainly focus on the recent advances in region-
based methods and direct methods, which are closely related
to our work.

2.1 Region-based methods

Most of the recent region-based 3D object tracking methods
are based on PWP3D (Prisacariu and Reid, 2012), which is
the first region-based 3D object tracker that achieves real-
time performance and is still among the state-of-art. This
famous work utilizes some basic concepts from Bibby and
Reid (2008) and Dambreville et al (2008), but the authors
use level-set functions as shape embedding function, and de-
fine an energy function based on pixel-wise posterior proba-
bilities, which proves to perform better than pixel-wise like-
lihoods (Prisacariu and Reid, 2012). After that, the authors
have extended their system to work on mobile phones (Prisacar-
iu et al, 2013) and RGB-D sensors (Ren et al, 2014).

Several region-based methods which focus on improv-
ing the performance of PWP3D have been proposed (Tjaden
et al, 2016; Hexner and Hagege, 2016; Zhao et al, 2014). T-
jaden et al (2016) address the problem of optimization s-
trategies. The original implementation of PWP3D uses a
simple gradient descent method in the pose optimization
process, which is not very efficient since the optimal step
size depends on model complexity and the size of the pro-
jected silhouette, thus is very difficult to decide. So Tjaden
et al (2016) present a novel pixel-wise optimization strate-
gy based on a Gauss-Newton-like algorithm. They approxi-
mate the Hessian matrix using only first order derivatives,
which proves to be efficient in determining the step size
automatically. They also introduce a real-time implementa-
tion based on CPU parallelization and OpenGL rendering.
In this paper, we formulate a novel hybrid energy function
based on both statistical and photometric constraints, which
also needs efficient optimization strategy. So we adapt the
Gauss-Newton-like optimization strategy suggested by T-
jaden et al (2016) to our method, which improves the con-
vergence property and tracking robustness.

Hexner and Hagege (2016) address the performance degra-
dation of PWP3D in complex scenes, where the statistical
properties of foreground and background vary, such as track-
ing heterogeneous objects in cluttered background. In the o-
riginal PWP3D method, the foreground and background re-
gions are described by global statistical models, which leads
to tracking failure in complex scenes because a single glob-
al appearance model does not sufficiently capture the spa-
tial variation. So Hexner and Hagege (2016) propose a new
framework based on multiple local appearance models. The
multiple local regions are centered around the 2D contour
points. For each local region, they maintain a unique local
foreground statistical model and local background statisti-
cal model respectively, which capture the local statistical
properties better than a single global model. For each point
around the contour, a local energy function is evaluated and
all the local energies are fused together for final pose es-
timation. This local region-based method is shown to have
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wider basin of attraction and higher probability of conver-
gence to the correct pose when evaluating on a 3D object
detection dataset, especially for heterogeneous objects. But
the performance of Hexner and Hagege (2016) for 3D object
tracking in video sequences is not addressed. This is proba-
bly due to the large number of local regions which add to the
complexity in computation. Inspired by them, we also make
use of local statistics by partitioning the global region into a
small number (e.g. 4) of foreground-background sub-region
pairs, as shown in Fig. 1(c,d). In our method, the local re-
gions are defined in a more concise manner, which makes it
more feasible for practical applications. Moreover, the uti-
lizing of photometric constraints in our method also helps to
deal with scene complexity.

Zhao et al (2014) improve the performance of PWP3D
by adding a boundary term in the energy function. They also
incorporate a particle-filtering module into the pipeline. The
performance of their method is evaluated on the Rigid Pose
Dataset (Pauwels et al, 2013), which we also adopt for quan-
titative evaluation and comparison. Some more recent works
also achieve real-time performance with both RGB (Tjaden
et al, 2017) and RGB-D (Kehl et al, 2017b) settings, but
they have not explored the possibility of incorporating pho-
tometric constraints in the region-based 3D object tracking
pipeline.

2.2 Direct methods

In recent years, direct methods have also been widely used
in planar tracking (Alismail et al, 2016; Chen et al, 2017),
3D object tracking (Crivellaro and Lepetit, 2014; Seo and
Wuest, 2016) and visual odometry (Engel et al, 2014, 2017).
Most of them are built on the famous direct image alignmen-
t framework: Lucas-Kanade algorithm (Lucas et al, 1981;
Baker and Matthews, 2004). The L-K framework is origi-
nally used to estimate 2D image transformations, but is later
extended to 3D object tracking by employing a 3D warping
function with a known object model (Crivellaro and Lep-
etit, 2014). Direct methods exploit rich per-pixel informa-
tion in the image instead of local features, thus are generally
more robust than feature-based methods. The most impor-
tant drawback of direct method is its underlying assump-
tion of photometric constancy, which is often violated by
lighting variations (Zhong et al, 2017). Many different ap-
proaches have been proposed to tackle this issue and to im-
prove the robustness of direct methods. Crivellaro and Lep-
etit (2014) propose to use gradient-based Descriptor Field-
s instead of raw pixel values to improve the tracking per-
formance with poor-textured objects, specular objects and
lighting variations. Similarly, Chen et al (2017) use gradien-
t orientation (GO) as the dense image descriptor. Alismail
et al (2016) introduce Bit-Planes, an illumination-invariant
binary descriptor, which obtains good results in low light

and sudden illumination changes. Except for designing ro-
bust dense image descriptors, some works propose to use
robust similarity measures such as Mutual Information (MI)
(Caron et al, 2014), or Normalized Cross Correlation (NCC)
(Scandaroli et al, 2012). Other works try to model the illu-
mination changes under Lambertian assumption (Seo and
Wuest, 2016).

In this paper, we adopt the idea of using robust local
descriptors instead of intensity or color to improve the ro-
bustness of photometric constraints when encountering il-
lumination changes and specularity. Specifically, we use the
gradient-based Descriptor Fields proposed by Crivellaro and
Lepetit (2014) to formulate the photometric constraints, which
will be detailed in Sect. 3.

2.3 Other State-of-art Methods

Apart from region-based methods and direct methods, some
other recent 3D object tracking approaches also achieve state-
of-art results.

Firstly, edge-based methods have been improved by in-
corporating color information or color statistics to search
for the correct edge correspondence. Panin et al (2008) pro-
pose an edge-based method integrating color and edge like-
lihoods. They consider intensity gradients and local color s-
tatistics as two complimentary visual modalities for efficient
data fusion. Petit et al (2013) develop a robust edge-based
3D object tracker combing geometrical and color edge in-
formation. They integrate geometrical and color features a-
long edges by combining the geometrical information pro-
vided by the distance between model and image edges with
a denser color information through foreground/background
color statistics. Seo et al (2014) propose a novel 3D object
tracking method based on optimal local searching of 3D-2D
correspondences between object model and image edges. In
their searching scheme, the region appearance is modeled
by HSV histograms on a newly defined local space to en-
sure the confident searching direction.

Secondly, a new kind of methods which combine model-
based approach and SLAM approach also show good re-
sults. Loesch et al (2015) propose to estimate the camera
pose relative to an object by combing dynamically extracted
3D contour points with a key-frame-based SLAM algorith-
m. The absolute information of the CAD model is direct-
ly integrated in the bundle adjustment (BA) process of the
SLAM algorithm. Singhal et al (2016) propose an object-
based SLAM algorithm which combines 3D object tracking
and visual odometry together. In their pipeline, objects are
included in the map as semantic entities to enhance the S-
LAM algorithm.

The success of these approaches have demonstrated the
effectiveness of properly combining information of different
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modalities. In this paper, we also propose a hybrid method
combining statistical information and photometric informa-
tion of the image.

2.4 Assumptions of the Proposed Method

In this paper, we find that direct method is ideal for cov-
ering the shortage of region-based method, as discussed in
Sect. 1. So we apply photometric constraints to the objec-
t region, trying to utilize the unused information of region-
based method. Experimental results demonstrate that the pro-
posed hybrid tracker obtains better results than using region-
based method or direct method alone. In the following dis-
cussions, we assume an initial object pose is available for
the first video frame, and focus on the frame-to-frame pose
tracking problem. 3D object detection methods, such as (Hin-
terstoisser et al, 2011; Kehl et al, 2017a), can be combined
with our method for initialization or reset.

As will be shown in the experiment part, the proposed
method is able to handle illumination changes and specular-
ity, as well as partial occlusions. In order to clarify the prop-
er application scenarios of the proposed method, some as-
sumptions need to be made about the camera motion and the
viewpoint. Firstly, a relatively small motion between con-
secutive frames is assumed. Secondly, we assume the object
is within a moderate distance to the camera in most of the
video frames, so that the object region in the image is neither
too small (e.g. less than 30 pixels) nor too big (e.g. bigger
than the field of view).

3 Proposed Method

In this section, we present the proposed hybrid 3D object
tracking algorithm. In Sect. 3.1, we introduce the basic no-
tations and formulate our new probabilistic model. In Sect.
3.2, we formulate the partitioned local statistical constraints.
In Sect. 3.3, we formulate the photometric constraints. In the
end, we present the final energy function combining statis-
tical and photometric constraints in Sect. 3.4, together with
the pose optimization strategy.

3.1 The Proposed Hybrid 3D Object Tracking Model

We begin by introducing the proposed hybrid 3D object track-
ing model. Fig. 4 illustrates the generative model of our
method. We define the notations as follows:

The RGB image is denoted by I. Every pixel x = (x,y)T

has a corresponding color vector y = I(x). Every pixel be-
longing to the object region x ∈ Ωob j has a corresponding
3D point X = (X ,Y,Z)T in the camera coordinate frame and
X0 = (X0,Y0,Z0)

T in the object coordinate frame. The 3D

rigid transformation between this two coordinate frames is
defined by a rotation matrix R and a translation vector T,
which can be encoded in a 6-dof pose vector p = (tx, ty, tz,
ωx,ωy,ωz)

T using Lie algebra representation. We have X =

R(p)X0+T(p) and x= π (KX), where K is intrinsic matrix
of the pre-calibrated camera, and π (X) = (X/Z,Y/Z)T .

Similar to most of region-based methods, we represent
the object in the image by its contour C, which is the zero
level-set C = {x|Φ (x) = 0} of the signed distance function
Φ (x) (Prisacariu and Reid, 2012). In previous works, the
foreground and background statistics are usually represent-
ed by a global foreground appearance model P

(
y|M f

)
and

a global background appearance model P(y|Mb), where y is
the RGB values of a certain foreground or background pixel.
The conditional distributions P

(
y|M f

)
and P(y|Mb) are the

likelihoods of a pixel with color y belonging to foreground
or background regions, and are commonly represented with
RGB color histograms.

Before introducing the proposed hybrid 3D object track-
ing model, we first declare that there are two different ‘band-
s’ used in this paper. First is the histogram band, which is
the region around the contour used for color histogram cal-
culation (e.g. ±32 pixels as shown in Fig. 1 (b)). Second
is the evaluation band, which is a narrower region around
the contour used for statistical energy evaluation and mini-
mization (e.g. ±8 pixels as shown in Fig. 3). We denote the
widths of these two bands by BWhist and BWeval respective-
ly. Theoretically, statistical constraints should be applied to
all the pixels in the histogram band. But as with most pre-
vious works, we choose to speed up the optimization in real
implementation by evaluating the statistical constraints only
in a narrower evaluation band. This is a reasonable approx-
imation because for pixels outside the evaluation band, the
influence of their gradients drops to below 5% of the center
pixel due to the smoothed Dirac delta function (as discussed
in Sect. 1 and demonstrated in Fig. 3). Nevertheless, we still
assume all the pixels in the histogram band (Ω f b) are used
for statistical constraints in the following theoretical deriva-
tions.

Now we introduce our hybrid 3D object tracking model.
As shown in Fig. 4, the whole foreground and background
regions are divided into n local foreground and background
sub-region pairs

{
Ω fi ,Ωbi

}
i=1:n and a single interior region

Ωin. The partitioning of the sub-region pairs are defined as
follows:

Firstly, the global foreground region Ω f and background
region Ωb, together with the interior region Ωin are defined
according to the distance transform function Φ (x):

Ω f = {x|−BWhist ≤Φ (x)< 0},
Ωb = {x|0 < Φ (x)≤ BWhist},
Ωin = {x|Φ (x)<−BWhist}.
Here BWhist is the bandwidth for color histogram calcu-

lation, which we set to 32 pixels as shown in Fig. 1 (b).
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Fig. 4: The notations and graphical model of the proposed method. In the graphical model, the solid edges denote terms
that are active for pixels in Ω f b = Ω f

⋃
Ωb =

⋃
i

{
Ω f i,Ωbi

}
, and the dotted edges denote terms that are active for pixels in

Ωob j = Ωin
⋃

Ω f .

n=4 n=8 n=16

Fig. 5: Some examples of the partitioned sub-regions.

Secondly, the centroid of the object region xc = (xc,yc)

is calculated and is used as the axis center for sub-region
division. Then we evenly partition the image region around
the axis center xc into n parts using polar coordinates. The
i-th image region is defined as:

ΩIMGi =
{

x
∣∣−π +(i−1)× 2π

n ≤ θ (x,xc)<−π + i× 2π

n

}
;

θ (x,xc)=atan2(x− xc,y− yc); i = 1,2, ...,n. (atan2 is
the four-quadrant inverse tangent function.)

Finally, the i-th sub-region pairs are defined as:
Ω f i = Ω f ∩ΩIMGi, Ωbi = Ωb∩ΩIMGi, i = 1,2, ...,n.
Some examples of the partitioned regions (n = 4,8,16)

are shown in Fig. 5. Compared with (Hexner and Hagege,
2016), in which the local regions are defined as small circles
centered around the contour points, here we have offered an
alternative way to select the local regions.

The number of local foreground-background sub-region
pairs can be chosen according to the spatial variation of the
statistical properties. The optimal number of regions will be
discussed in the experiment part. For example, in Fig. 4, the
global foreground and background regions are partitioned
into 4 sub-region pairs

{
Ω f1 ,Ωb1

}
,
{

Ω f2 ,Ωb2

}
,
{

Ω f3 ,Ωb3

}
,{

Ω f4 ,Ωb4

}
and a single interior region Ωin. For each sub-

region pair Ωi =
{

Ω fi ,Ωbi

}
, we have a specific local fore-

ground statistical model P
(
y|M fi

)
and a local background

statistical model P
(
y|Mbi

)
. For the object region Ωob j =

Ωin
⋃

Ω f , we impose a photometric constraint to each pixel
according to the photometric constancy assumption of direct
methods, and the likelihood is denoted by P

(
y|Mob j

)
. So in

our generative model, the region indicator variable
M ∈

{
M fi ,Mbi

}
i=1:n∪{Mob j}.

As with most region-based methods, we also assume
pixel-wise independence and treat the whole image region
as a bag-of-pixels

{
xj,yj

}
j=1:NΩ

(Bibby and Reid, 2008).
NΩ is the total number of pixels used in our probabilistic
model:

NΩ = N f b +Nob j =
n

∑
i=1

(
N fi +Nbi

)
+Nob j

where N fi and Nbi are the number of pixels belonging to the
i-th foreground-background sub-region pair and Nob j is the
number of pixels belonging to the object region. Note that
the pixels in the foreground region Ω f are used twice for s-
tatistical constraints and photometric constraints respective-
ly.

According to the graphical model in Fig. 4, for a single
pixel which belongs to one of the foreground-background
sub-region pairs, i.e., x ∈ Ω f b =

⋃
i

Ωi, the joint distribution

can be written as:

P(x,y,p,Φ ,M)

= P(x|p,Φ ,M)P(y|M)P(M)P(Φ)P(p)
(1)

For a single pixel which belongs to the object region,
i.e., x ∈Ωob j, the joint distribution can be written as:

P(y,y0,p) = P(y|y0,p)P(y0)P(p) (2)
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where y0 is the color of the corresponding pixel x0 in the
previous frame, which will be detailed in Sect. 3.3.

The pose estimation problem can be solved by maximiz-
ing the posterior probability over all of the pixels:

pMAP = argmax
p

∏
x∈Ω f b

P(p,Φ |x,y,M) ∏
x∈Ωob j

P(p|y,y0) (3)

In the following subsections, we derive the statistical
constraints applied to pixels x ∈ Ω f b and the photometric
constraints applied to pixels x ∈ Ωob j. Then, we combine
these two kinds of constraints together and obtain the final
energy function.

3.2 Statistical Constraints

We apply a statistical constraint for every pixel x ∈ Ω f b.
Since we have partitioned the foreground and background
regions into several sub-region pairs, we calculate the sta-
tistical constraints for each sub-region pair respectively. For
a pixel in the i-th sub-region pair x ∈ Ωi = Ω fi ∪Ωbi , the
joint distribution has the same form as Eq. (1), but here
M ∈

{
M fi ,Mbi

}
, meaning only the pixels in the i-th sub-

region pair are being considered. We omit P(Φ) and P(p)
because we do not have prior knowledge of the level-set
embedding function and the pose parameters. We replace
P(y|M)P(M) with P(M|y)P(y) according to Bayes rule and
then marginalize over M (Bibby and Reid, 2008; Prisacariu
and Reid, 2012):

P(p,Φ |x,y)
= P

(
x|Φ ,p,M fi

)
P
(
M fi |y

)
+P

(
x|Φ ,p,Mbi

)
P
(
Mbi |y

)
(4)

Here, 1/P(x) is dropped since it is considered as con-
stant for all pixel locations. P

(
x|Φ ,p,M fi

)
and P

(
x|Φ ,p,Mbi

)
are the spatial priors for a pixel location x:

P
(
x|Φ ,p,M fi

)
=

He (Φ (x))
η fi

(5)

P
(
x|Φ ,p,Mbi

)
=

1−He (Φ (x))
ηbi

(6)

where He is the smoothed Heaviside step function identi-
cal to (Tjaden et al, 2016). η fi = ∑

x∈Ωi

He (Φ (x)) and ηbi =

∑
x∈Ωi

(1−He (Φ (x))) are the number of foreground and back-

ground pixels in the i-th sub-region pair (Prisacariu and Rei-
d, 2012).

P
(
M fi |y

)
and P

(
Mbi |y

)
are the color posteriors:

P
(
M fi |y

)
=

P
(
y|M fi

)
P
(
M fi
)

P
(
y|M fi

)
P
(
M fi
)
+P

(
y|Mbi

)
P
(
Mbi

) (7)

P
(
Mbi |y

)
=

P
(
y|Mbi

)
P
(
Mbi

)
P
(
y|M fi

)
P
(
M fi
)
+P

(
y|Mbi

)
P
(
Mbi

) (8)

where P
(
y|M fi

)
and P

(
y|Mbi

)
are the likelihood functions

calculated from the local color histograms of the i-th sub-
region pair. The region prior P

(
M fi
)
= η fi/

(
η fi +ηbi

)
,

P
(
Mbi

)
= ηbi/

(
η fi +ηbi

)
.

Now we have the posterior distribution of a single pixel:

P(p,Φ |x,y) = He (Φ (x))Pfi +(1−He (Φ (x)))Pbi (9)

where Pfi =P
(
M fi |y

)
/η fi , Pbi =P

(
Mbi |y

)
/ηbi . We take the

negative log posterior probability and sum over the pixels
and the sub-region pairs to obtain the energy function for
statistical constraints:

E f b =− ∑
i=1:n

∑
x∈Ωi

logP(p,Φ |x,y)

=− ∑
i=1:n

∑
x∈Ωi

log
(
He (Φ (x))Pfi +(1−He (Φ (x)))Pbi

)
(10)

3.3 Photometric Constraints

We apply a photometric constraint for every pixel x ∈ Ωob j
to ensure the photometric constancy between the curren-
t frame and the previous frame. Pixel-wise photometric con-
stancy assumes that the corresponding pixels from the pre-
vious frame (which serves as the template image in direct
method) and the current frame have the same intensity or
color. As shown in Fig. 6, we assume I(x) = I0 (x0) for
each pixel in the object region. For a pixel x0 in the previ-
ous frame, we first back-project x0 to the 3D model in pose
p0, and then re-project the 3D point X to the current frame
in pose p. In this way, we find a corresponding pixel x for
every x0 through the 3D warping function x = W (x0,p) =
Pro j

(
Pro j−1 (x0,p0) ,p

)
.

For a given pixel x0 in the previous frame, its color y0 =

I0 (x0). Following the joint distribution for a single pixel in
the object region (Eq. (2)), we have:

P(p|y,y0) =
P(y|p,y0)P(p)

P(y)
(11)

We drop the term P(y) because it does not depend on the
pose parameter p. We assume the prior distribution of p is
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Previous Frame I0 Current Frame I

 1

0 0,ProjX x p  ,Projx X p

0x

 0 ,W x p

x
obj obj

𝐗

Fig. 6: The 3D warping function. According to the photo-
metric constancy assumption, the corresponding pixels in
the object regions of consecutive frames have the same col-
or, i.e., I(x) = I0 (x0). The correspondence is found using a
3D warping function W (x,p).

uniform, i.e., P(p) = const. So that P(p|y,y0) ∝ P(y|p,y0).
Here a common assumption is that P(y|p,y0) ∼ N (y0,σ)

(Kerl et al, 2013):

P(y|p,y0) ∝ exp

{
−‖y−y0‖2

σ2

}
(12)

Then we obtain the energy function for photometric con-
straints:

Eob j =− ∑
x∈Ωob j

logP(y|p,y0)

= λ ∑
x∈Ωob j

‖y−y0‖2

= λ ∑
x∈Ωob j

‖I(x)− I(x0)‖2

(13)

where x =W (x0,p), λ= 1
σ2 .

As introduced in Sect. 1, the original assumption of pho-
tometric constancy is often violated by illumination changes
and specularity. Although this could be alleviated by the
statistical term in our method, it is still a negative factor
when dealing with illumination changes or specular objects.
Therefore, we propose to use robust dense local descriptors
instead of color to formulate the photometric constraints.
Specifically, Crivellaro and Lepetit (2014) have demonstrat-
ed that gradient-based Descriptor Fields could significantly
improve the robustness of direct alignment in presence of
non-Lambertian illumination effects, such as specularities.
So we choose to replace the color I(x) with the gradient-

based Descriptor Fields F(x) and get a slightly altered ener-
gy for photometric constraints:

Eob j = λ ∑
x∈Ωob j

‖F(x)−F(x0)‖2 (14)

Here F(x) denotes the gradient-based Descriptor Fields,
which consists of four channels (positive and negative val-
ues of image gradients along x-direction and y-direction re-
spectively, details could be found in (Crivellaro and Lepetit,
2014)). With this slightly altered energy function for photo-
metric constraints, our method could better handle illumina-
tion changes and specularity.

Another issue is the covisibility of the 3D object points
in consecutive frames. A 3D object point X (back-projected
from image point x0) which is visible in frame I0 might be
invisible in frame I due to self-occlusion of the object. In
this case, x and x0 are not projections of the same 3D point,
so that they should not be included in the photometric ener-
gy. We apply a simple strategy to detect these self-occluded
pixels. For every back-projected point X from frame I0, we
calculate the angle between the sight ray in frame I (from
camera to point X) and the surface normal at X. If the angle
is larger than 90◦, we decide it is visible in frame I. Other-
wise, we treat it as invisible points and discard it from the
photometric energy. According to our experiments, the num-
ber of invisible points is usually very small, because signif-
icant change of viewpoint between consecutive frames does
not frequently happen. But this strategy would be necessary
when encountering fast rotation or translation of the object.

3.4 Joint Statistical and Photometric Energy Minimization
for Pose Optimization

In the previous subsections, we have derived the energy func-
tions for statistical constraints and photometric constraints
respectively. Now we combine them together to obtain the
final energy function:

E =E f b +Eob j

=− ∑
i=1:n

∑
x∈Ωi

log
(
He (Φ (x))Pfi +(1−He (Φ (x)))Pbi

)
+λ ∑

x∈Ωob j

‖F(x)−F(x0)‖2

(15)

The first term in the energy function is a general non-
linear optimization problem w.r.t. pose parameter p, while
the second term leads to a standard non-linear least squares
problem. λ acts as the weighting factor to balance the statis-
tical term and the photometric term.
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We found that using simple gradient descent approach
yields bad results for this complex non-linear optimization
problem. In order to efficiently optimize pose parameters
on this complex energy function, we use an iterative Gauss-
Newton-like optimization strategy and split the calculation
of Jacobian matrix and Hessian matrix into two parts:

J = J f b +Job j H = H f b +Hob j (16)

For the first part:

J f b =
∂E f b

∂p
= ∑

i=1:n
∑

x∈Ωi

J f b (x)

=− ∑
i=1:n

∑
x∈Ωi

Pfi −Pbi

He (Φ (x))Pfi +(1−He (Φ (x)))Pbi

× ∂He (Φ (x))
∂p

(17)

and

∂He (Φ (x))
∂p

=
∂He

∂Φ

∂Φ

∂x
∂x
∂p

(18)

Here, ∂He
∂Φ

= δe (Φ) is the smoothed Dirac delta func-

tion, ∂Φ

∂x =
[

∂Φ

∂x ,
∂Φ

∂y

]
is calculated using centered finite dif-

ferences. ∂x
∂p can be derived from

x = π (KX) = π (K (R(p)X0 +T(p)))

and the details can be found in Tjaden et al (2016); Hexner
and Hagege (2016). Then, the Hessian is approximated as:

H f b = ∑
i=1:n

∑
x∈Ωi

J f b(x)T J f b (x) (19)

Here the approximation of Hessian from Jacobians for
this general non-linear energy term is developed from empir-
ical and experimental studies of some previous works such
as (Tjaden et al, 2016; Ren et al, 2017; Kehl et al, 2017b).
We also give a mathematical derivation of this approxima-
tion in Appendix A.

The Jacobian and Hessian for the second part can be di-
rectly calculated from standard Gauss-Newton method:

Job j =
∂Eob j

∂p

= λ ∑
x∈Ωob j

(F(x)−F(x0))
∂F(x)

∂p

(20)

and

∂F(x)
∂p

=
∂F(x)

∂x
∂x
∂p

(21)

where F(x)−F(x0) is the residual, ∂F(x)
∂x =

[
∂F
∂x ,

∂F
∂y

]
is the

gradient of each channel in the Descriptor Fields. ∂x
∂p can be

calculated from x =W (x0,p) = Pro j
(
Pro j−1 (x0,p0) ,p

)
.

The Hessian:

Hob j = λ ∑
x∈Ωob j

(
∂F(x)

∂p

)T (
∂F(x)

∂p

)
(22)

In the end, the pose parameter update ∆p is calculated
in each iteration as follows:

∆p =−H−1JT =−
(
H f b +Hob j

)−1(J f b +Job j
)T (23)

4 Evaluation

4.1 Datasets and Implementation Details

We evaluate the performance of our method through four d-
ifferent set of experiments. For all of the experiments a com-
modity desktop computer with Intel i7 quad core CPU @4.0
GHz and NVIDIA GeForce GTX970 GPU is used. In our
implementation, GPU is only used for rendering purposes,
and all the other computations are performed on the CPU.
After each frame, the local color histograms are updated us-
ing the same rule as in (Tjaden et al, 2017). Our method runs
at 20-25 Hz using CPU parallelization.

4.1.1 Datasets

Firstly, we evaluate our method on a newly constructed dataset
(HTS Dataset) with ground-truth annotations. The HTS Dataset
consists of 6 real-world video sequences containing Hetero-
geneous objects, Texture-less objects and Symmetrical ob-
jects. In this experiment, we demonstrate the improvements
of our method compared to the baseline for tracking differ-
ent types of objects after applying partitioned local statisti-
cal model and adding in photometric constraints.

Secondly, we compare the performance of our method
with some state-of-art methods on Rigid Pose Dataset (Pauwel-
s et al, 2013). The proposed method achieves competitive or
better performance compared to the state-of-art on this chal-
lenging dataset.

Thirdly, in order to demonstrate the robustness of our
method with respect to illumination changes and specularity,
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Table 2: Evaluation results on HTS Dataset. (Tracking Success Rate, in %)

Method Constraints hetero-1 hetero-2 t-less-1 t-less-2 sym-1 sym-2
Global Region Global Statistical 84.8 77.0 98.3 97.6 86.8 77.3

Partitioned Local Region Local Statistical 91.9 87.6 98.8 97.9 92.1 85.4
Hybrid Region+Direct (Proposed) Local Statistical + Photometric 97.9 99.0 98.9 97.9 98.1 94.3

we evaluate our method on Dense Tracking Dataset (Crivel-
laro and Lepetit, 2014), which contains strong moving light
sources and bright specularities.

Finally, we compare the performance of our method with
the recent state-of-art local region-based method (Tjaden et al,
2017) on their semi-synthetic dataset.

4.1.2 Optimal Number of Sub-regions

Choosing the number of local sub-region pairs n is a trade-
off problem between discriminative power and invariance.
Using a larger n could make the partitioned local statistical
models more discriminative, but it would also make them
less stable because of the decreasing number of pixels.

After trying different number of sub-regions on a subset
of Rigid Pose Dataset (Pauwels et al, 2013), we find that us-
ing n = 4 is enough for most of the tracking scenarios, while
increasing it to n = 8 yields virtually the same results. Using
n = 16 or larger would degrade the tracking performance.
So we use n = 4 in all of the following experiments. The de-
tails about selecting the optimal number of sub-regions will
be discussed in Sect. 4.3.3.

4.1.3 Balancing the Tracking Energy with λ

It is very important to choose the proper weighting factor
λ in Eq. (15). The weighting factor λ should compensate
for the numerical scale and the different number of pixels
used in the statistical term and the photometric term (Kehl
et al, 2017b). According to our experiment, the numerical s-
cale for the statistical term is∼ 104, and the numerical scale
for the photometric term is ∼ 102. We also consider the d-
ifferent number of pixels used for statistical constraints and
photometric constraints. The weighting factor is then set to
λ= 102× N f b

Nob j
in each iteration.

4.1.4 Scale-aware Bandwidth Selection

In the previous sections, the width of the histogram band
BWhist is fixed to ±32 pixels, and the width of the evalua-
tion band BWeval is fixed to ±8 pixels. Now we discuss the
bandwidth selection problem.

As for the histogram band, we find the optimal BWhist is
insensitive to the size of the object silhouette. The±32 band
provides enough number of pixels to construct discrimina-
tive color histograms. Using larger BWhist could decrease the

discrimination of the calculated color histograms and is not
necessary since the energy evaluation is only conducted in
a narrower evaluation band. If BWhist is set too small, the
small number of pixels will cause over-fitting of the calcu-
lated color histograms.

As for the evaluation band, most of the previous region-
based methods choose to use a fixed BWeval of ±8 pixels,
and we find it reasonable because it yields good results in
most cases. But we also notice that it would be a little more
accurate to use a smaller BWeval when the object silhouette
is very small in the image. Through our experiments, we
develop an empirical rule for choosing a scale-aware BWeval
as follows:

BWeval = min
{

8,max
{

2,2
√

Ob jArea
50

}}
where Ob jArea is the area of the object region.

4.2 Evaluation on HTS Dataset

To evaluate the performance of the proposed hybrid track-
er for different types of real-world objects, we have con-
structed the HTS (Heterogeneous, Texture-less, Symmetri-
cal) Dataset. This dataset consists of 6 video sequences cap-
turing a heterogeneously colored cube, a texture-less bun-
ny, and a symmetrical coffee can. The objects used in HTS
Dataset are shown in Fig. 8. For all the videos, we obtain the
ground-truth object poses using a 2D marker board provided
by the ArUco library (Garrido-Jurado et al, 2014).

In order to validate the effectiveness of the proposed t-
wo main contributions, we have tested 3 different versions
of our method on HTS Dataset. Firstly, we test a baseline
method: Global Region-based method, which applies only
global statistical constraints. Secondly, we test a Partitioned
Local Region-based method, in which we partition the glob-
al region into a small number of local sub-regions and apply
local statistical constraints. Finally, we test the proposed hy-
brid method which combines local statistical constraints and
photometric constraints together. The evaluation results are
shown in Table 2. We measure the tracking success rate (SR)
throughout each sequence. A frame is successfully tracked if
the rotation error and translation error are both smaller than
the thresholds (e rot=0.1 radians, e transl=30 mm). We an-
alyze the tracking performance for different types of objects
in detail as follows:
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Fig. 7: Sample frames from the HTS Dataset and the corresponding tracking results of the proposed method.

cube bunny coffee

Fig. 8: The newly constructed HTS Dataset. First row: The
3 objects in HTS Dataset. Second row: The corresponding
3D mesh models.

4.2.1 Heterogeneous Object

Compared to the baseline Global Region-based method, our
two improved versions perform significantly better for the
heterogeneous cube. Specifically, when applying partitioned
local statistical constraints, the Local Region-based method
obtains 7.1% and 10.6% higher SR scores than the base-
line in the two video sequences. After adding in photometric
constraints, the proposed Hybrid method again obtains 6.0%
and 11.4% improvements in SR score (overall 13.1% and
22.0% improvements compared to the baseline). The rea-
son is that the partitioned sub-regions have more discrim-

inative statistical properties, and the involvement of pho-
tometric constraints utilize extra dense pixel-wise informa-
tion thus making the algorithm more robust. In this exper-
iment, we put the heterogeneously colored cube in a het-
erogeneous background with very similar color distribution-
s, so that the global foreground and background color his-
tograms also tend to be very similar. As illustrated in Fig.
9, the global foreground and background color histograms
tend to be confusing and not discriminative enough for seg-
menting the foreground and background regions. However,
when partitioning the global region into 4 sub-foreground-
regions (1∼4) and 4 sub-background-regions (5∼8), the cor-
responding local color histograms are much more discrimi-
native. This also contributes to a far better foreground (and
background) posterior map (Eqs. (7), (8)) as shown in Fig.
10, which makes the pose optimization results more accu-
rate and stable.

Note that this heterogeneously colored cube is specially
designed to illustrate the proposed partitioned region-based
model. We also use a special way to partition the sub-regions
for this cube: we bind the two axes to coincide with the col-
or pattern on the 3D model, and then project the axes on-
to the image, so that the axes will also coincide with the
color pattern in each image frame (as long as the pose esti-
mation is correct). This kind of special partitioning will not
work for general objects, and we use it here only for demon-
stration purpose. For comparison, we also test the perfor-
mance when using the standard partitioning strategy (which
we have introduced in Sect. 3.1) for this cube. The SR s-
cores are 90.1 and 85.7 for the ‘Partitioned Local Region’
method, and 96.0 and 96.2 for the ‘Hybrid Region+Direct’
method. The scores indicate that the standard partitioning
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Fig. 9: Comparison of global color histograms and parti-
tioned local color histograms.

Frame #16 Frame #102 Frame #213

Fig. 10: Comparison of foreground posterior maps of glob-
al color model and partitioned local color model. First row:
Image frames. Second row: Foreground posterior maps of
global color model. Third row: Foreground posterior map-
s of partitioned local color model. (Red: High probability;
Blue: Low probability.)

way is also effective for this cube (although not as effective
as the special way here). Except for this colored cube, all
the other objects in this dataset and the following datasets
are partitioned in the standard way. We clarify that the idea
of partitioning the global region into local sub-regions is ef-
fective for general heterogeneous objects, as proved in the
following experiments.

4.2.2 Texture-less Object

Contrary to the heterogeneous object, the proposed methods
show very little improvements for the texture-less (homo-
geneous) object (‘bunny’). This is to be expected, since for
homogeneous objects, the global statistical model is already
sufficient to describe the foreground region. In this situa-
tion, applying partitioned local statistical models only con-

tributes to a slightly better description for the background
region. So the Partitioned Local Region-based method on-
ly achieves slightly better results. Moreover, as described in
Sect. 1, direct methods rely on image gradients, thus they
are less suitable for tracking purely homogeneous objects.
So adding in photometric constraints does not improve the
tracking performance for the texture-less object, either.

4.2.3 Symmetrical Object

For the symmetrical coffee can, the proposed method out-
performs the baseline by a large margin. In order to show
the advantage of our method for tracking this symmetrical
object, we mainly rotate the coffee can around its vertical
axis in the ‘sym-1’ sequence (it also contains small-scale
translations), then simultaneously rotate and translate it in
the ‘sym-2’ sequence. In this experiment, the Partitioned
Local Region-based method obtains 5.3% and 8.1% high-
er SR scores than the baseline. After adding in photomet-
ric constraints, the proposed Hybrid method again obtains
6.0% and 8.9% improvements in SR score (overall 11.3%
and 17.0% improvements compared to the baseline). When
a symmetrical object rotates around its axis of symmetry,
the projected contour on the image does not change, which
would disrupt the traditional global region-based methods.
The previous works usually treat the poses around the ax-
is of symmetry identical. But in some applications (e.g. AR
applications), it is necessary to distinguish them. In order
to tackle this problem, we use more discriminative local s-
tatistical models, and distinguish the symmetrical poses by
applying photometric constraints. Although the object con-
tour doesn’t change while rotating, the texture of the objec-
t changes continuously, which could be used to determine
the right rotating angle. Note that the Global Region-based
method also obtains a relatively high SR score in these two
videos. This is because the coffee can isn’t a perfectly sym-
metrical object, some small differences in shape help to dis-
tinguish different rotating angles. Moreover, since we rotate
it with a relatively low speed, sometimes a frame which is
not perfectly tracked will not be detected as tracking failure
because the error doesn’t exceed the threshold. On the other
hand, the SR scores are improved by local region partition-
ing because it helps to correctly estimate the translation part.

To conclude, the above evaluation results have proven
the effectiveness of the two proposed main contributions:
the partitioned local statistical model and the combination
of statistical + photometric constraints. In particular, the pro-
posed method is shown to be most effective for tracking het-
erogeneous and symmetrical objects, which solves the in-
herent problems of global region-based methods.

Some sample frames from the HTS Dataset and the cor-
responding tracking results of the proposed method are pre-
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Table 3: Evaluation results on Original and Noisy Sequences of Rigid Pose Dataset. (Tracking Success Rate, in %)

Method Constraints soda soup clown candy cube edge average
orig noisy orig noisy orig noisy orig noisy orig noisy orig noisy

PWP3D Statistical 84 84 96 96 96 89 84 84 84 74 85 84 86.7
Bound.Const. Statistical 96 97 95 98 95 96 94 96 92 93 93 93 94.8

Descriptor Fields Photometric 92 85 92 93 98 93 90 88 96 95 92 94 92.3
Consecutive Photometric 90 88 95 95 93 92 93 93 95 95 95 95 93.3

Proposed Stat.+Phot. 97 95 98 98 98 97 95 95 97 96 96 96 96.5

Table 4: Evaluation results on Occluded Sequences of Rigid Pose Dataset. (Tracking Success Rate, in %)

method constraints soda soup clown candy cube edge average
PWP3D Statistical 44 44 44 39 38 39 41.3
Bound. Cons. Statistical 73 82 81 84 76 64 76.7
Descriptor Fields Photometric 50 54 48 66 53 40 51.8
Consecutive Photometric 66 76 68 81 71 65 71.2
Proposed Stat. + Phot. 75 79 84 84 73 67 77.0

Soda CubeClown Candy EdgeSoup

Fig. 11: Tracked objects in Rigid Pose Dataset (Pauwels
et al, 2013).

sented in Fig. 7. Our method successfully tracks the 3 ob-
jects of different types through all the video sequences with
high precision.

4.3 Evaluation on Rigid Pose Dataset

In the second set of experiments, we compare the perfor-
mance of the proposed method with the state-of-art meth-
ods on Rigid Pose Dataset (Pauwels et al, 2013). The Rigid
Pose Dataset provides synthetic video sequences of 6 differ-
ent objects (as shown in Fig. 11) under a variety of realis-
tic conditions. The provided videos compose of original se-
quences, noisy sequences and occluded sequences, and are
featured with fast and wide-range movements, object vari-
ability and background cluttering.

4.3.1 Results on Original and Noisy Sequences

Table 3 summarizes the evaluation results on the original
and noisy sequences of Rigid Pose Dataset. We compare the
results of our method with the other four methods: a state-of-
art region-based 3D tracker, PWP3D (Prisacariu and Reid,
2012); a boundary constrained region-based method (Zhao
et al, 2014); a gradient-based direct tracker (Crivellaro and

Fig. 12: SR score and runtime (per frame) w.r.t. the number
of sub-regions.

Lepetit, 2014); and a method based on direct alignment be-
tween consecutive video frames under Lambertian assump-
tion (Seo and Wuest, 2016). We use the same evaluation cri-
teria as in Pauwels et al (2013). We measure the tracking
success rate throughout the entire sequence. When tracking
is lost, the tracker is automatically reset to the ground truth.
The evaluation results in Table 3 show that our method per-
forms averagely better than the other 4 state-of-art methods
on original and noisy sequences of this challenging dataset.
Specifically speaking, the proposed hybrid method achieves
competitive or higher tracking success rate (SR) in track-
ing both well-textured (soda, soup, candy, cube) and poor-
textured (clown, edge) objects. Our method also performs
well in the presence of noise. Some indicative video frames
and the corresponding tracking results are illustrated in Fig.
13. The proposed method accurately tracks the objects even
when they move fast, rotate in a wide range, or move far
away from the camera. We also plot the 6-dof tracking re-
sults of the (original) ‘soup’ sequence in Fig. 13 and com-
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Fig. 13: Top: Sample frames from the Rigid Pose Dataset (Pauwels et al, 2013) and the corresponding tracking results.
Bottom: Determined pose parameters of the ‘soup’ sequence. We compare the 6-dof tracking results (red) with the ground-
truth pose parameters (black) to show the tracking accuracy of the proposed method.

pare them with the ground-truth pose parameters, which shows
the high tracking accuracy of the proposed method.

As discussed in previous sections, the proposed hybrid
tracker combines statistical and photometric constraints to-
gether, which increases the robustness of the algorithm. As
a result, our hybrid tracker achieves better performance than
the region-based PWP3D method (Prisacariu and Reid, 2012)
and Boundary Constrained method (Zhao et al, 2014) which
utilize only statistical constraints, and also outperforms the
two direct methods (Descriptor Fields (Crivellaro and Lep-
etit, 2014) and Consecutive (Seo and Wuest, 2016)) which
utilize only photometric constraints.

4.3.2 Results on Occluded Sequences

We also evaluate our method on the occluded sequences.
The results are summarized in Table 4. Our method obtains
a slightly higher average SR score on these occluded videos
compared to the state-of-art. Although we didn’t apply a
specific occlusion handling strategy in our method, the lo-

calized statistical model itself helps to deal with some cer-
tain degrees of partial occlusions (Tjaden et al, 2017). We
notice that our method would fail when a large part (e.g.
more than half) of the object is occluded, which will be fur-
ther discussed in Sect. 4.6.

4.3.3 Selecting the Optimal Number of Sub-regions

We demonstrate the impact of using different number of sub-
regions n by evaluating on a subset of Rigid Pose Dataset.
We test n = 1,4,8,16,32,64 on the original sequences and
record the SR score and runtime w.r.t. each n. The results
are plotted in Fig. 12. The curves show that using n = 4
or n = 8 yields virtually equal best SR scores, while using
n = 16 or larger degrades the tracking performance. Also,
the average runtime per frame slowly increases with n due
to the increasing number of local histograms that need to be
maintained. So we decide it would be a good choice to use
n = 4 or n = 8, and all the other experimental results in this
paper are obtained with n = 4.



16 Leisheng Zhong, Li Zhang

Table 5: Evaluation results on Dense Tracking Dataset. (Tracking Success Rate, in %)

Method Constraints Exp#1 Exp#2 ATLAS#1 ATLAS#2
Global Region Global Statistical 97.5 88.2 76.1 60.6

Partitioned Local Region Local Statistical 98.5 95.3 88.5 69.7
Hybrid Region+Direct (Proposed) Local Statistical + Photometric 99.7 98.4 90.4 78.8

Fig. 14: Sample frames from the Dense Tracking Dataset (Crivellaro and Lepetit, 2014) and the corresponding tracking
results.

Exp ATLAS

Fig. 15: Two challenging environments in Dense Tracking
Dataset (Crivellaro and Lepetit, 2014).

4.4 Evaluation on Dense Tracking Dataset

To better evaluate our method in more complicated and re-
alistic situations, we run a third set of experiments on Dense
Tracking Dataset (Crivellaro and Lepetit, 2014). This dataset
provides real-world video sequences in two challenging en-
vironments, including strong moving light source, bright spec-
ularities and motion blur caused by fast movement (as shown
in Fig. 15). Moreover, 3D models of the whole scenes are
provided in this dataset, so we crop out the main object for
tracking evaluation. While both two scenes contain strong
moving light sources, the first scene (videos Exp#1 and Ex-
p#2) contains specular background, and the second scene
(videos ATLAS#1 and ATLAS#2) contains specular object-
s.

The evaluation results are shown in Table 5. Some in-
dicative frames together with our tracking results are illus-
trated in Fig. 14. The proposed Hybrid method obtains bet-
ter results than Global Region-based method and Partitioned

Local Region-based method in the presence of complex il-
lumination changes and specularity (with specular object or
specular background), which demonstrates the robustness of
our method to non-Lambertian lighting effects. Note that the
use of gradient-based Descriptor Fields in our photometric
energy helps to overcome the disadvantage of direct meth-
ods when dealing with illumination changes and specularity,
as discussed in Sect. 3.3.

4.5 Evaluation on the Dataset of (Tjaden et al, 2017)

In order to compare the proposed method with the recent
state-of-art method (Tjaden et al, 2017), we conduct the last
experiment on the semi-synthetic dataset of (Tjaden et al,
2017). As with in (Tjaden et al, 2017), we calculate the
RMSE (Root Mean Squared Error) and STD (Standard De-
viation) of translation in (x,y,z) directions and rotation around
the (x,y,z) axes. Since (Tjaden et al, 2017) is a purely region-
based method, we also evaluate the region-only version of
our method (without including the photometric term). The
results are shown in Table 6. We compare the 6-dof pose
parameters estimated by the proposed (hybrid) method and
Tjaden et al (2017) in Fig. 16. The calculated mean errors
indicate that both two versions of our method obtain a rel-
atively lower (but comparable) tracking precision compared
to (Tjaden et al, 2017). But note that as with in (Tjaden et al,
2017), the errors in Table 6 are calculated from the tracking
results of frames 1∼868, because Tjaden et al (2017) suffers
from a silhouette pose ambiguity for rotation starting from
frame 869, as shown in the second row of Fig. 16. In con-
trast, this pose ambiguity is successfully avoided by the pro-
posed hybrid method thanks to the added photometric term
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Fig. 16: Comparison of the 6-dof tracking results estimated by our method (red) and Tjaden et al (2017) (orange). The
ground-truth pose parameters are in black.

Table 6: Comparison with (Tjaden et al, 2017) (RMSE ±
STD).

Tjaden et al Proposed Proposed (region-only)
x 1.2±0.9mm 1.8±1.5mm 1.8±1.6mm
y 1.3±1.1mm 2.0±1.5mm 2.2±1.6mm
z 7.5±5.7mm 10.9±7.8mm 10.8±7.2mm
rx 2.3±2.3◦ 2.0±1.3◦ 2.2±1.3◦

ry 1.3±1.2◦ 1.8±1.4◦ 1.9±1.8◦

rz 1.1±2.0◦ 2.0±1.6◦ 2.0±1.5◦

in our hybrid energy function, which proves the advantage
of our method in dealing with silhouette pose ambiguities.

4.6 Discussions

Regarding the above experiments, several issues need to be
discussed in detail.

The limitation of our method. Although we have demon-
strated the robustness of our method in several challenging
datasets, it still has some limitations. Firstly, an efficient oc-
clusion handling strategy is yet to be developed. As declared
in Sect. 4.3.2, our method could handle a certain degree
of occlusion, but would fail when encountering heavy oc-
clusions. We expect that the robustness of our method to
heavy occlusions could be improved by cooperating with
some learning-based strategy (such as training a deep neu-
ral network to accurately detect the occluded area). Second-
ly, we find that the proposed method gets relatively more
sensitive to initialization quality after adding in photometric
constraints. This is because direct methods are inherently
not able to recover from a bad initialization (which could be
seen as a pose drift, as mentioned in Table 1). But thanks
to the statistical term, our method still has the ability to re-
cover from imperfect initializations. We test on the original
sequences of Rigid Pose Dataset by randomly sampling a
perturbation angle and a translational offset for each frame.
According to our experiments, the proposed method is able

to recover from a rotation error of ±10◦, or a translation er-
ror of ±10% of the object size. So we think it is acceptable
since most of the state-of-art 3D object detection methods
could provide an initial pose with much better precision.

The cooperation of the statistical term and the pho-
tometric term. As discussed in Sect. 1, the statistical term
from region-based methods and the photometric term from
direct methods have complementary properties and would
help each other in some specific tracking scenarios. The above
experiments have also demonstrated that the cooperation of
these two terms would contribute to better tracking results.
But it is necessary to discuss if there are some cases when
one term disturbs the convergence of the second one. For
example, since traditional direct methods are sensitive to il-
lumination changes and specularity, photometric term seems
to play a negative role in this case. But as declared in Sect.
3.3 and proved by the experimental results in Sect. 4.4, the
use of gradient-based Descriptor Fields instead of intensity
or color in the photometric term has significantly alleviat-
ed this problem. The involvement of the photometric term
actually helps to improve the SR scores in videos contain-
ing lighting variations. On the other hand, we find that the
photometric term do disturb the statistical term in recover-
ing from pose drifts or imperfect initializations (but within
an acceptable degree), as discussed right above. Based on
the overall performance of the proposed hybrid tracker, we
consider these two terms generally cooperate very well, only
with some minor interferences.

The influence of the accuracy and complexity of 3D
models. The accuracy of 3D models would influence the
tracking accuracy of model-based methods. To the best of
our knowledge, except for some simple objects (such as cubes)
which could be precisely created, most of the 3D model-
s used in the above datasets are reconstructed by some 3D
modeling softwares (which are based on off-line Structure-
from-Motion and Multi-View Stereo techniques) from pho-
tos of different viewpoints. According to our experience, the
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Table 7: Model Loading and Rendering Time Analysis

Model Triangles Tload Trender
ATLAS 2 0.07s 0.9ms
clown 800 0.2s 1.4ms
driller 25306 0.4s 1.6ms
coffee 508645 6.0s 3.6ms

accuracy of the reconstructed model is usually within sever-
al millimeters for an everyday object. This kind of 3D mod-
els are not as accurate as 3D models acquired from laser
scanning, but they are enough for our method to produce
good tracking results as shown in the above experiments.
On the other hand, the complexity of the 3D models would
affect the runtime of our method. We choose 4 representa-
tive models from the evaluated datasets, and the number of
triangles ranges from 2 to 508645. The model loading and
rendering time for each model is listed in Table 7 (‘driller’
is the 3D model used in the dataset of (Tjaden et al, 2017)).
For 3D model with a large number of triangles, the loading
time increases significantly. But since the model only needs
to be loaded once into the renderer before tracking the first
frame, it will not affect the subsequent tracking process. The
model rendering time also increases with the number of tri-
angles, but stays within an acceptable range. We find that a
general everyday object could be well modeled by 1k∼100k
triangles, which we believe is feasible for real-time tracking.

5 Conclusion

We have presented a robust hybrid 3D object tracking method
by integrating statistical constraints from region-based meth-
ods and photometric constraints from direct methods. Through
this novel integration, we are able to make full use of the
image information: (1) Both statistical distributions and raw
pixel values of the image are utilized; (2) Both pixels around
the contour and pixels inside the contour are properly used.
Therefore, the proposed hybrid 3D object tracker gains su-
perior robustness over region-based method or direct method
alone. Experiments on a newly constructed real-world dataset
and several challenging public datasets have demonstrated
the competitive or superior performance of our method com-
pared to the state-of-art.

Appendix A The Hessian Approximation

Here we give a mathematical explanation of the Hessian ap-
proximation (Eq. (19)) used for the statistical term in our
energy function:

E f b =− ∑
i=1:n

∑
x∈Ωi

log
(
He (Φ (x))Pfi +(1−He (Φ (x)))Pbi

)

(24)

We first consider the statistical energy for a single pixel
x:

E f b (x) =− log
(
He (Φ (x))Pfi +(1−He (Φ (x)))Pbi

)
(25)

The Jacobian for pixel x:

J f b (x) =
∂E f b (x)

∂p

= −
Pfi −Pbi

He (Φ (x))Pfi +(1−He (Φ (x)))Pbi

∂He (Φ (x))
∂p

(26)

Here J f b (x) ∈ R6, corresponding to the 6-dof pose pa-
rameter p. The m-th element can be written as:

[
J f b (x)

]
m =

∂E f b (x)
∂ pm

= −
Pfi −Pbi

He (Φ (x))Pfi +(1−He (Φ (x)))Pbi

∂He (Φ (x))
∂ pm

(27)

The Hessian for pixel x: H f b (x) ∈R6×6, and the (m,n)-
th element can be written as:

[
H f b (x)

]
m,n =

∂ 2E f b (x)
∂ pm∂ pn

=
∂

[
− Pfi−Pbi

He(Φ(x))Pfi+(1−He(Φ(x)))Pbi

∂He(Φ(x))
∂ pm

]
∂ pn

=

(
Pfi −Pbi

)2 ∂He(Φ(x))
∂ pn[

He (Φ (x))Pfi +(1−He (Φ (x)))Pbi

]2 ∂He (Φ (x))
∂ pm

−

Pfi −Pbi

He (Φ (x))Pfi +(1−He (Φ (x)))Pbi

∂ 2He (Φ (x))
∂ pm∂ pn

(28)

We denote the first term as h1 (which contains first or-
der derivatives), and the second term as h2 (which contains
second order derivatives):

[
H f b (x)

]
m,n = h1−h2 (29)

Comparing to Eq. (27), we have:

h1 =
[
J f b (x)

]
m

[
J f b (x)

]
n =

[
J f b(x)T J f b (x)

]
m,n

(30)

As with the standard Gauss-Newton method (which aim-
s to solve non-linear least square problems), we obtain an



A Robust Monocular 3D Object Tracking Method Combining Statistical and Photometric Constraints 19

approximation of the Hessian matrix by ignoring the second-
order derivative term h2:

[
H f b (x)

]
m,n = h1 =

[
J f b(x)T J f b (x)

]
m,n

(31)

H f b (x) = J f b(x)T J f b (x) (32)

In the end, we sum over all of the pixels and obtain the
Hessian approximation used in Sect. 3.4:

H f b = ∑
i=1:n

∑
x∈Ωi

J f b(x)T J f b (x) (33)
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Jiménez MJ (2014) Automatic generation and detection of high-
ly reliable fiducial markers under occlusion. Pattern Recognition
47(6):2280–2292

Hexner J, Hagege RR (2016) 2d-3d pose estimation of heterogeneous
objects using a region based approach. International Journal of
Computer Vision 118(1):95–112

Hinterstoisser S, Holzer S, Cagniart C, Ilic S, Konolige K, Navab
N, Lepetit V (2011) Multimodal templates for real-time detection
of texture-less objects in heavily cluttered scenes. In: International
Conference on Computer Vision (ICCV), pp 858–865

Kehl W, Manhardt F, Tombari F, Ilic S, Navab N (2017a) Ssd-6d: Mak-
ing rgb-based 3d detection and 6d pose estimation great again. In:
International Conference on Computer Vision (ICCV), pp 1521–
1529

Kehl W, Tombari F, Ilic S, Navab N (2017b) Real-time 3d model track-
ing in color and depth on a single cpu core. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp 745–753

Kerl C, Sturm J, Cremers D (2013) Robust odometry estimation for
rgb-d cameras. In: IEEE International Conference on Robotics and
Automation (ICRA), IEEE, pp 3748–3754

Lepetit V, Fua P (2005) Monocular model-based 3D tracking of rigid
objects. Now Publishers Inc

Lima JP, Simões F, Figueiredo L, Kelner J (2010) Model based mark-
erless 3d tracking applied to augmented reality. Journal on 3D In-
teractive Systems 1

Loesch A, Bourgeois S, Gay-Bellile V, Dhome M (2015) Generic
edgelet-based tracking of 3d objects in real-time. In: IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS),
IEEE, pp 6059–6066

Lucas BD, Kanade T, et al (1981) An iterative image registration tech-
nique with an application to stereo vision. In: International Joint
Conference on Artificial Intelligence (IJCAI), vol 81, pp 674–679

Panin G, Roth E, Knoll A (2008) Robust contour-based object tracking
integrating color and edge likelihoods. In: VMV, pp 227–234

Park Y, Lepetit V, Woo W (2008) Multiple 3d object tracking for aug-
mented reality. In: IEEE/ACM International Symposium on Mixed
and Augmented Reality (ISMAR), pp 117–120

Pauwels K, Rubio L, Diaz J, Ros E (2013) Real-time model-based rigid
object pose estimation and tracking combining dense and sparse vi-
sual cues. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp 2347–2354

Petit A, Marchand E, Kanani K (2013) A robust model-based tracker
combining geometrical and color edge information. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
IEEE, pp 3719–3724

Prisacariu VA, Reid ID (2012) Pwp3d: Real-time segmentation and
tracking of 3d objects. International Journal of Computer Vision
98(3):335–354

Prisacariu VA, Kahler O, Murray DW, Reid ID (2013) Simultaneous
3d tracking and reconstruction on a mobile phone. In: IEEE Inter-
national Symposium on Mixed and Augmented Reality (ISMAR),
IEEE, pp 89–98

Ren C, Prisacariu V, Kähler O, Reid I, Murray D (2017) Real-time
tracking of single and multiple objects from depth-colour imagery
using 3d signed distance functions. International Journal of Com-
puter Vision pp 1–16

Ren CY, Prisacariu V, Kaehler O, Reid I, Murray D (2014) 3d tracking
of multiple objects with identical appearance using rgb-d input. In:
International Conference on 3D Vision (3DV), IEEE, vol 1, pp 47–
54

Scandaroli GG, Meilland M, Richa R (2012) Improving ncc-based di-
rect visual tracking. In: European Conference on Computer Vision
(ECCV), Springer, pp 442–455

Seo BK, Wuest H (2016) A direct method for robust model-based 3d
object tracking from a monocular rgb image. In: European Confer-
ence on Computer Vision Workshop (ECCVW), pp 551–562

Seo BK, Park H, Park JI, Hinterstoisser S, Ilic S (2014) Optimal local
searching for fast and robust textureless 3d object tracking in high-
ly cluttered backgrounds. IEEE Transactions on Visualization and
Computer Graphics 20(1):99–110

Singhal P, White R, Christensen H (2016) Multi-modal tracking for
object based slam. arXiv preprint arXiv:160304117
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